

Molecule Generation with Fragment Retrieval Augmentation

Seul Lee^{1*}, Karsten Kreis², Srimukh Prasad Veccham², Meng Liu², Danny Reidenbach², Saee Paliwal², Arash Vahdat²⁺, Weili Nie²⁺

- ¹ KAIST, ² NVIDIA
- * Work done during an internship at NVIDIA
- ⁺ Equal advising

Motivation

• Fragment-based drug discovery (FBDD) has been considered as an effective approach to explore the chemical space.

- - as they only reassemble or slightly modify the given fragments.

Motivation

• Fragment-based drug discovery (FBDD) has been considered as an effective approach to explore the chemical space.

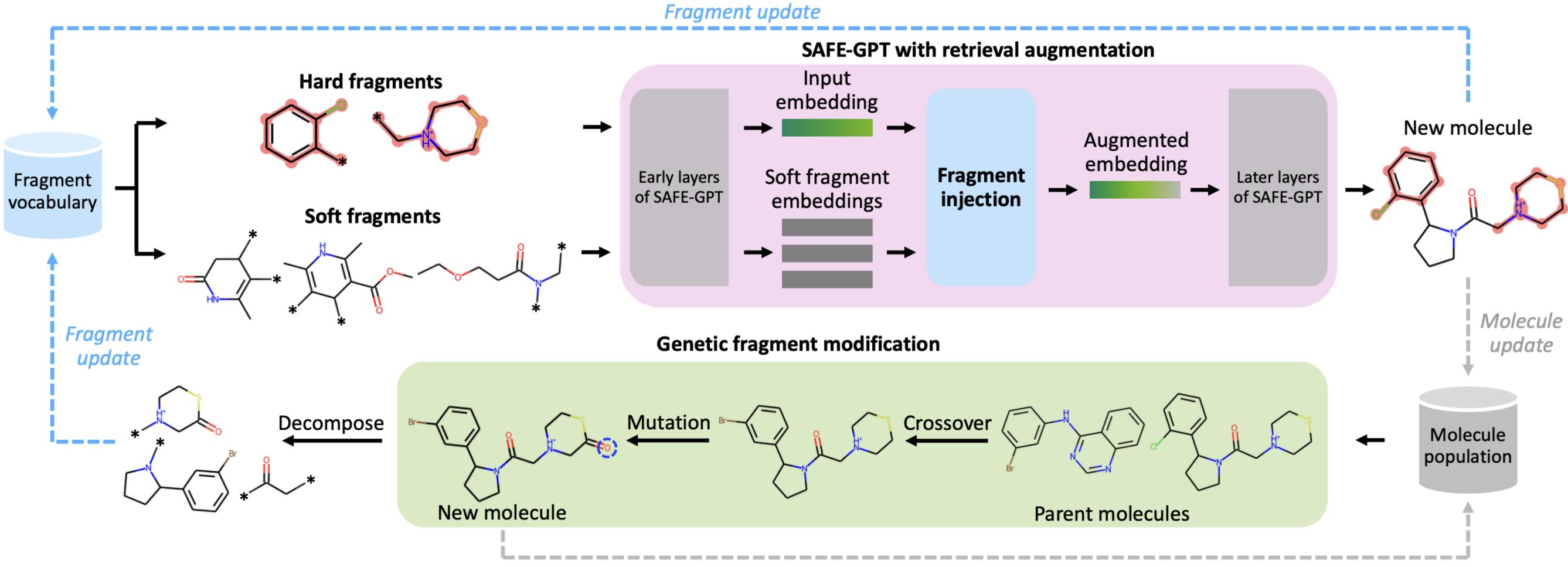
• Generative models have been adopted in the field of FBDD to accelerate the process.

Many fragment-based molecule generation methods show limited exploration

- - as they only reassemble or slightly modify the given fragments.
- FBDD + RAG \rightarrow Fragment Retrieval-Augmented Generation (*f*-RAG).
 - hard fragments and soft fragments.

Motivation

• Fragment-based drug discovery (FBDD) has been considered as an effective approach to explore the chemical space.

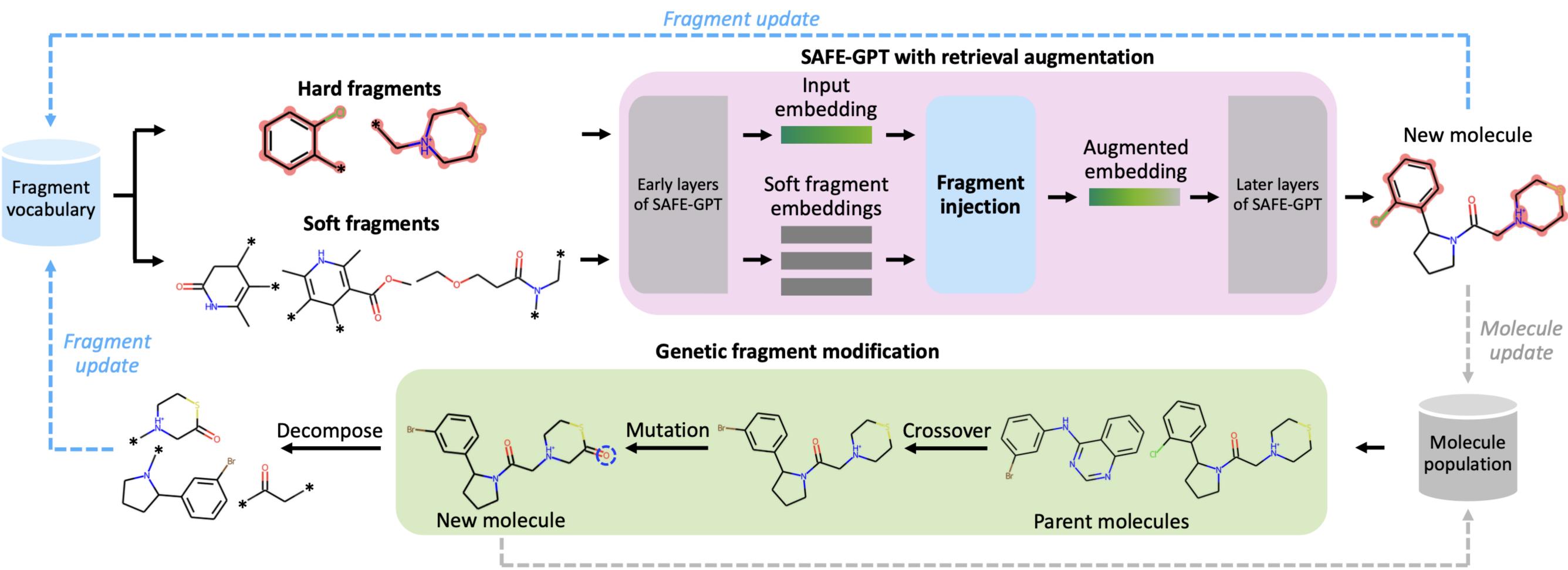

• Generative models have been adopted in the field of FBDD to accelerate the process.

Many fragment-based molecule generation methods show limited exploration

• *f*-RAG augments the pre-trained molecular language model SAFE-GPT with two types of retrieved fragments:

Construct a fragment vocabulary.

Methodology

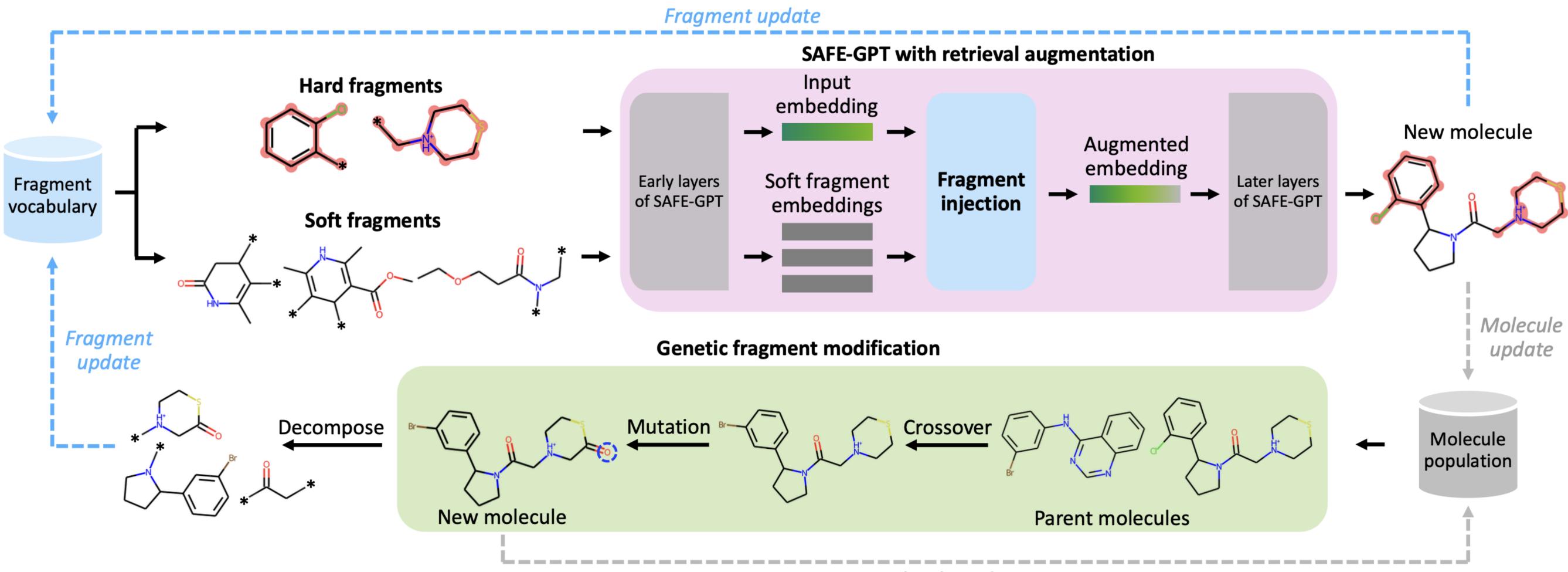

• Decompose known molecules from the existing library into fragments and scoring the fragments.

Molecule update

- Construct a fragment vocabulary.

Methodology

• Decompose known molecules from the existing library into fragments and scoring the fragments.


• *f*-RAG retrieves fragments that will be explicitly included in the new molecule (i.e., hard fragments). • Hard fragments serve as the input context to the molecular language model that predicts the remaining fragments.

• *f*-RAG retrieves fragments that will not be part of the generated molecule but provide guidance (i.e., soft fragments). • The soft fragment embeddings are fused with the hard fragment embeddings through a lightweight fragment injection module in the middle of SAFE-GPT.

Molecule update

which is further enhanced with **post-hoc genetic fragment modification**.

Methodology

• *f*-RAG updates the fragment vocabulary with generated fragments via an iterative refinement process

Molecule update

Oracle	f-RAG (ours)	Genetic GFN	Mol GA	REINVENT	Graph GA
albuterol_similarity	$\textbf{0.977} \pm 0.002$	0.949 ± 0.010	0.896 ± 0.035	0.882 ± 0.006	0.838 ± 0.016
amlodipine_mpo	0.749 ± 0.019	$\textbf{0.761} \pm 0.019$	0.688 ± 0.039	0.635 ± 0.035	0.661 ± 0.020
celecoxib_rediscovery	0.778 ± 0.007	$\textbf{0.802} \pm 0.029$	0.567 ± 0.083	0.713 ± 0.067	0.630 ± 0.097
deco_hop	$\textbf{0.936} \pm 0.011$	0.733 ± 0.109	0.649 ± 0.025	0.666 ± 0.044	0.619 ± 0.004
drd2	$\textbf{0.992} \pm 0.000$	0.974 ± 0.006	0.936 ± 0.016	0.945 ± 0.007	0.964 ± 0.012
fexofenadine_mpo	$\textbf{0.856} \pm 0.016$	$\textbf{0.856} \pm 0.039$	0.825 ± 0.019	0.784 ± 0.006	0.760 ± 0.011
gsk3b	0.969 ± 0.003	0.881 ± 0.042	0.843 ± 0.039	0.865 ± 0.043	0.788 ± 0.070
isomers_c7h8n2o2	0.955 ± 0.008	0.969 ± 0.003	0.878 ± 0.026	0.852 ± 0.036	0.862 ± 0.065
isomers_c9h10n2o2pf2cl	0.850 ± 0.005	$\textbf{0.897} \pm 0.007$	0.865 ± 0.012	0.642 ± 0.054	0.719 ± 0.047
jnk3	$\textbf{0.904} \pm 0.004$	0.764 ± 0.069	0.702 ± 0.123	0.783 ± 0.023	0.553 ± 0.136
median1	0.340 ± 0.007	$\textbf{0.379} \pm 0.010$	0.257 ± 0.009	0.356 ± 0.009	0.294 ± 0.021
median2	$\textbf{0.323} \pm 0.005$	0.294 ± 0.007	0.301 ± 0.021	0.276 ± 0.008	0.273 ± 0.009
mestranol_similarity	0.671 ± 0.021	$\textbf{0.708} \pm 0.057$	0.591 ± 0.053	0.618 ± 0.048	0.579 ± 0.022
osimertinib_mpo	$\textbf{0.866} \pm 0.009$	0.860 ± 0.008	0.844 ± 0.015	0.837 ± 0.009	0.831 ± 0.005
perindopril_mpo	$\textbf{0.681} \pm 0.017$	0.595 ± 0.014	0.547 ± 0.022	0.537 ± 0.016	0.538 ± 0.009
qed	0.939 ± 0.001	$\textbf{0.942} \pm 0.000$	0.941 ± 0.001	0.941 ± 0.000	0.940 ± 0.000
ranolazine_mpo	$\textbf{0.820} \pm 0.016$	0.819 ± 0.018	0.804 ± 0.011	0.760 ± 0.009	0.728 ± 0.012
scaffold_hop	0.576 ± 0.014	$\textbf{0.615} \pm 0.100$	0.527 ± 0.025	0.560 ± 0.019	0.517 ± 0.007
sitagliptin_mpo	0.601 ± 0.011	$\textbf{0.634} \pm 0.039$	0.582 ± 0.040	0.021 ± 0.003	0.433 ± 0.075
thiothixene_rediscovery	$\textbf{0.584} \pm 0.009$	0.583 ± 0.034	0.519 ± 0.041	0.534 ± 0.013	0.479 ± 0.025
troglitazone_rediscovery	0.448 ± 0.017	$\textbf{0.511} \pm 0.054$	0.427 ± 0.031	0.441 ± 0.032	0.390 ± 0.016
valsartan_smarts	$\textbf{0.627} \pm 0.058$	0.135 ± 0.271	0.000 ± 0.000	0.178 ± 0.358	0.000 ± 0.000
zaleplon_mpo	0.486 ± 0.004	$\textbf{0.552} \pm 0.033$	0.519 ± 0.029	0.358 ± 0.062	0.346 ± 0.032
Sum	16.928	16.213	14.708	14.196	13.751

Experiments: PMO Benchmark

• *f*-RAG outperformed the previous methods in the PMO goal-directed hit generation benchmark.

• *f*-RAG achieved improved trade-offs between optimization performance, diversity, novelty, and synthesizability.

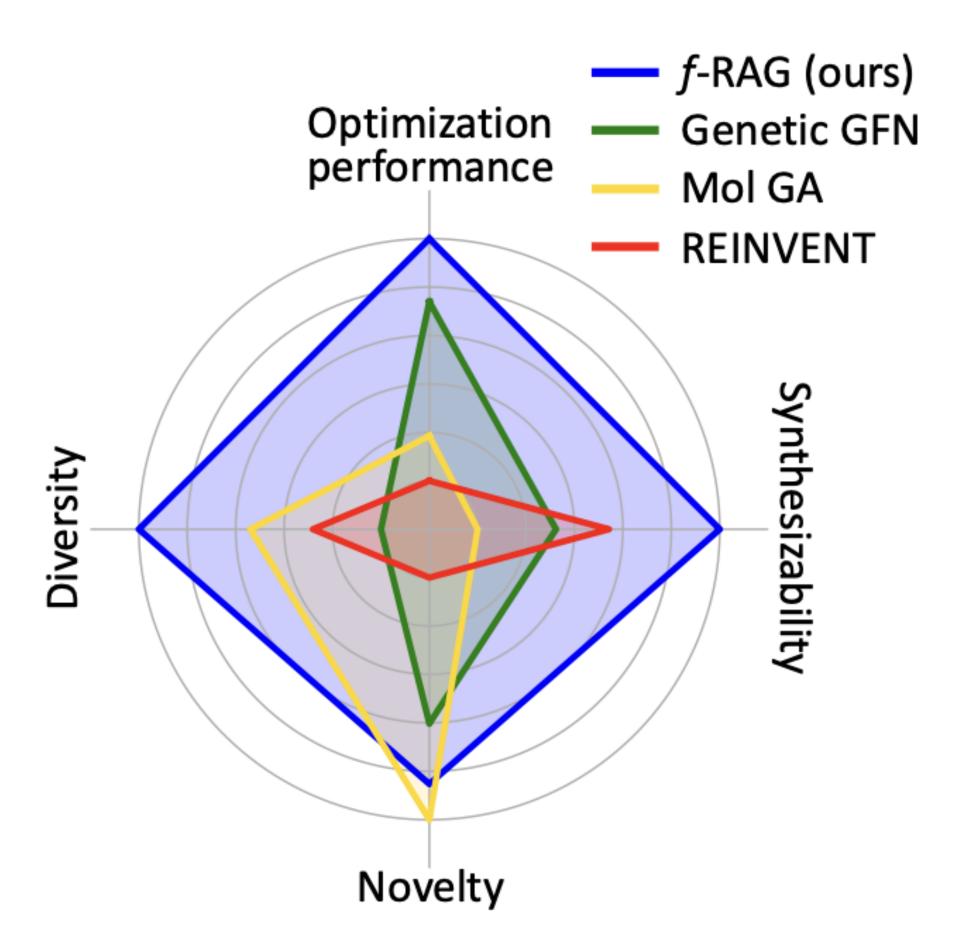
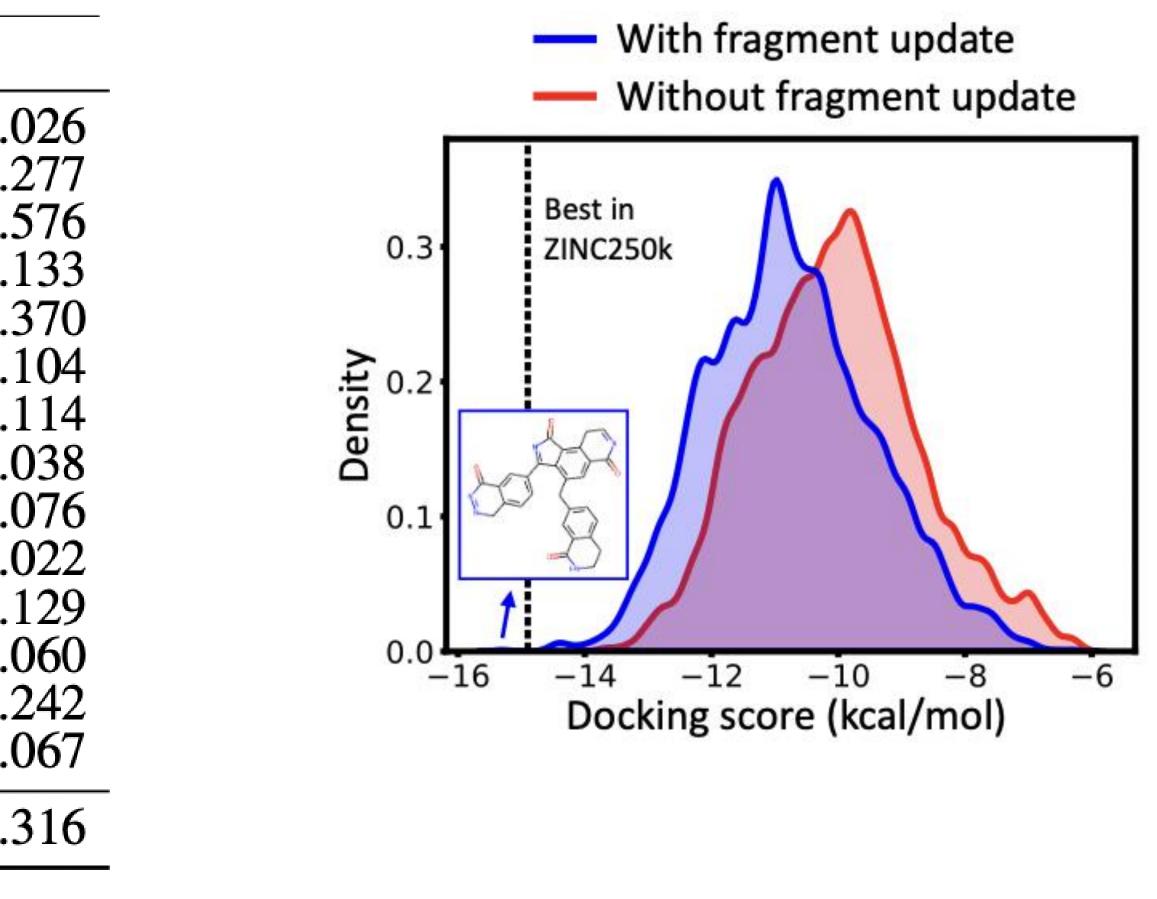


Figure 1: A radar plot of target properties. f-RAG strikes better balance among optimization performance, diversity, novelty, and synthesizability than the state-of-the-art techniques on the PMO benchmark [10].


Experiments: Constrained Docking Score Optimization

- - (the maximum similarity with the training molecules) < 0.4
 - DS < (the median DS of known active molecules)
 - QED > 0.5
 - SA < 5

			— — — — — — — — — —				
Method	Target protein						
	parp1	fa7	5ht1b	braf	jak2		
JT-VAE [16]	-9.482 ± 0.132	-7.683 ± 0.048	-9.382 ± 0.332	-9.079 ± 0.069	-8.885 ± 0.0		
REINVENT [35]	-8.702 ± 0.523	-7.205 ± 0.264	-8.770 ± 0.316	-8.392 ± 0.400	-8.165 ± 0.2		
Graph GA [14]	-10.949 ± 0.532	-7.365 ± 0.326	-10.422 ± 0.670	-10.789 ± 0.341	-10.167 ± 0.5		
MORLD [15]	-7.532 ± 0.260	-6.263 ± 0.165	-7.869 ± 0.650	-8.040 ± 0.337	-7.816 ± 0.1		
HierVAE [17]	$\textbf{-9.487} \pm 0.278$	-6.812 ± 0.274	-8.081 ± 0.252	-8.978 ± 0.525	-8.285 ± 0.3		
GA+D [32]	-8.365 ± 0.201	-6.539 ± 0.297	-8.567 ± 0.177	-9.371 ± 0.728	-8.610 ± 0.1		
MARS [45]	-9.716 ± 0.082	-7.839 ± 0.018	-9.804 ± 0.073	-9.569 ± 0.078	-9.150 ± 0.1		
GEGL [1]	-9.329 ± 0.170	-7.470 ± 0.013	-9.086 ± 0.067	-9.073 ± 0.047	-8.601 ± 0.0		
RationaleRL [18]	-10.663 ± 0.086	-8.129 ± 0.048	-9.005 ± 0.155	No hit found	-9.398 ± 0.0		
FREED [46]	-10.579 ± 0.104	-8.378 ± 0.044	-10.714 ± 0.183	-10.561 ± 0.080	-9.735 ± 0.0		
PS-VAE [20]	-9.978 ± 0.091	-8.028 ± 0.050	-9.887 ± 0.115	-9.637 ± 0.049	-9.464 ± 0.1		
MOOD [24]	-10.865 ± 0.113	-8.160 ± 0.071	-11.145 ± 0.042	-11.063 ± 0.034	-10.147 ± 0.0		
RetMol [42]	-8.590 ± 0.475	-5.448 ± 0.688	-6.980 ± 0.740	-8.811 ± 0.574	-7.133 ± 0.2		
GEAM [25]	-12.891 ± 0.158	-9.890 ± 0.116	-12.374 ± 0.036	-12.342 ± 0.095	-11.816 ± 0.0		
f-RAG (ours)	-12.945 ± 0.053	-9.899 ± 0.205	-12.670 ± 0.144	$\textbf{-12.390} \pm 0.046$	-11.842 \pm 0.3		

• *f*-RAG outperformed the previous methods in docking score (DS) optimization under QED, SA, and novelty constraints.

• With the dynamic update, f-RAG can discover molecules that have higher DS than the top molecule in the training set.

