

Provably Transformers Harness Multi-Concept Word Semantics for Efficient In-Context Learning

Dake Bu, Wei Huang*, Andi Han, Atsushi Nitanda, Taiji Suzuki, Qingfu Zhang, Hau-San Wong*

- \triangleright Motivation & Background
	- Ø *Observed linear latent geometry of LLM*
	- Ø *Technical limitation of currentwork*
- \triangleright Introduction
- \triangleright Problem & Model Formulation
	- Ø *Polysemous Word Model & Concept-specific Prompt Distribution*
	- Ø *Transformer & SGD setup*
- \triangleright Main Result
	- Ø *Exponential Convergence*
	- Ø *OOD results*
- \triangleright Experiments
- Conclusion

Japan: Sakura; China:

\circledS Japan: Sakura; China: Peony.

The peony is often considered a national flower of China and symbolizes prosperity, honor, and beauty. It holds cultural and historical significance, much like the cherry blossom does in Japan.

Japan: Sakura; Australia: Kangaroo; China:

\circledS Japan: Sakura; Australia: Kangaroo; China: Panda.

The giant panda is widely recognized as a symbol of China, representing peace, friendship, and the country's commitment to wildlife conservation.

 Qn D D Q Z \sim

1

Japan: Sakura; China:

\circledS Japan: Sakura; China: Peony.

The peony is often considered a national flower of China and symbolizes prosperity, honor, and beauty. It holds cultural and historical significance, much like the cherry blossom does in Japan.

Japan: Sakura; Australia: Kangaroo; China:

Japan: Sakura; Australia: Kangaroo; China: Panda.

The giant panda is widely recognized as a symbol of China, representing peace, friendship, and the country's commitment to wildlife conservation.

 QH \cap QH QV

Ø **Observation**: Different *task concepts* are identified from the same words in different prompt.

Japan: Sakura; China:

\circledS Japan: Sakura; China: Peony.

The peony is often considered a national flower of China and symbolizes prosperity, honor, and beauty. It holds cultural and historical significance, much like the cherry blossom does in Japan.

Japan: Sakura; Australia: Kangaroo; China:

The giant panda is widely recognized as a symbol of China, representing peace, friendship, and the country's commitment to wildlife conservation.

 Qn $\bigcap_{i=1}^n$ $\bigcap_{i=1}^n$ Qn $\bigcap_{i=1}^n$

- Ø **Observation**: Different *task concepts* are identified from the same words in different prompt.
- \triangleright **Question**: Why can an additional demo-pair influence the outcome of ICL greatly?

Ø **Observed Multi-Concept Latent Geometric Linearity of LLM**.

Existing studies [1-4] suggest the multi-concepts are encoded linearly in the latent representation of LLM.

- Representations *within-concepts (topics)* have positive inner products
- Representations *cross-concepts (topics)* exhibit near-orthogonal relationships
- ICA is more suitable than PCA when extracting meaningful concepts

4 [5] Reizinger et al. Position: Understanding LLMs Requires More Than Statistical Generalization. ICML 2024 [1] Yamagiwa et al. Discovering universalgeometry in embeddings with ICA. EMNLP 2023 [2] Li et al. How Do Transformers Learn Topic Structure: Towards a Mechanistic Understanding. ICML 2023 [3] Park et al. 2023: The linear representation hypothesis and the geometry of large language models. ICML 2024 **[4] Jiang et. al. On the origins oflinear representations in large language models. ICML 2024**

Ø **Observed Multi-Concept Latent Geometric Linearity of LLM**.

Existing studies [1-4] suggest the multi-concepts are encoded linearly in the latent representation of LLM.

- Representations *within-concepts (topics)* have positive inner products
- Representations *cross-concepts (topics)* exhibit near-orthogonal relationships
- ICA is more suitable than PCA when extracting meaningful concepts

Essential Question

Whether and how do the observed latent geometry facilitate

transformer in ICL, especially in OOD scenario?

Remark: This question is also raised as a research question **Question 5.1.4** in [5], available after our submission.

- **[1] Yamagiwa et al. Discovering universalgeometry in embeddings with ICA. EMNLP 2023**
- **[2] Li et al. How Do Transformers Learn Topic Structure: Towards a Mechanistic Understanding. ICML 2023**
- [3] Park et al. 2023: The linear representation hypothesis and the geometry of large language models. ICML 2024
- **[4] Jiang et. al. On the origins oflinear representations in large language models. ICML 2024**
- **5 [5] Reizinger et al. Position: Understanding LLMs Requires More Than Statistical Generalization. ICML 2024**

Ø **Observed Multi-Concept Latent Geometric Linearity of LLM**.

Existing studies [1-4] suggest the multi-concepts are encoded linearly in the latent representation of LLM.

- Representations *within-concepts (topics)* have positive inner products
- Representations *cross-concepts (topics)* exhibit near-orthogonal relationships
- ICA is more suitable than PCA when extracting meaningful concepts

Ø **Existing transformer theories suffer from unrealistic settings**.

- Prior theories are conducted on unrealistic settings such as linear or ReLU transformers, MLP-free attention only models, QK-combined softmax attention and impractical loss functions like square / hinge loss.

- Due to their technical limitation, they only obtain linear or sub-linear convergence rates.

6 [5] Reizinger et al. Position: Understanding LLMs Requires More Than Statistical Generalization. ICML 2024 [1] Yamagiwa et al. Discovering universalgeometry in embeddings with ICA. EMNLP 2023 [2] Li et al. How Do Transformers Learn Topic Structure: Towards a Mechanistic Understanding. ICML 2023 [3] Park et al. 2023: The linear representation hypothesis and the geometry of large language models. ICML 2024 **[4] Jiang et. al. On the origins oflinear representations in large language models. ICML 2024**

- \triangleright Motivation & Background
	- Ø *Observed linear latent geometry of LLM*
	- Ø *Technical limitation of currentwork*

\triangleright Introduction

- \triangleright Problem & Model Formulation
	- Ø *Polysemous Word Model & Concept-specific Prompt Distribution*
	- Ø *Transformer & SGD setup*
- \triangleright Main Result
	- Ø *Exponential Convergence*
	- Ø *OOD results*
- \triangleright Experiments
- Conclusion

Introduction

Grounded in the studies of the LLM linear concept representation, we conduct theoretical analysis on a concept-specific sparse coding prompt distribution for ICL bi-classification tasks. Our main contributions are highlighted as below.

Ø We are the first to analyze the realistic setting: *softmax* attention + *ReLU* MLP

transformer, which is trained using the *cross-entropy loss* via stochastic gradient descent

Introduction

Grounded in the studies of the LLM linear concept representation, we conduct theoretical analysis on a concept-specific sparse coding prompt distribution for ICL bi-classification tasks. Our main contributions are highlighted as below.

 \triangleright We are the first to analyze the realistic setting: *softmax* attention + *ReLU* MLP

transformer, which is trained using the *cross-entropy loss* via stochastic gradient descent

Ø We are the first to showcase the *exponential 0-1 loss convergence* over the highly non-

convex training dynamics in ICL theory

Introduction

Grounded in the studies of the LLM linear concept representation, we conduct theoretical analysis on a concept-specific sparse coding prompt distribution for ICL bi-classification tasks. Our main contributions are highlighted as below.

 \triangleright We are the first to analyze the realistic setting: *softmax* attention + *ReLU* MLP

transformer, which is trained using the *cross-entropy loss* via stochastic gradient descent

- Ø We are the first to showcase the *exponential 0-1 loss convergence* over the highly non convex training dynamics in ICL theory
- Ø We provably show that transformers can perform *certain OOD ICL tasks* by leveraging the multi-concept semantic linearity after training, highlighting their *innovative*

9 *potential* for large models.

- \triangleright Motivation & Background
	- Ø *Observed linear latent geometry of LLM*
	- Ø *Technical limitation of currentwork*
- \triangleright Introduction
- \triangleright Problem & Model Formulation
	- \triangleright Polysemous Word Model & Concept-specific Prompt Distribution
	- \triangleright Transformer & SGD setup
- \triangleright Main Result
	- Ø *Exponential Convergence*
	- Ø *OOD results*
- \triangleright Experiments
- Conclusion

\triangleright **Polysemous Word Model**. $(\mathcal{D}_x, \mathcal{D}_y, \mathcal{D}_z, \mathcal{D}_{\xi_x}, \mathcal{D}_{\xi_y})$

Define the feature and label dictionaries:

$$
\mathbf{M} = [\mu_1^+, \mu_1^-, \cdots, \mu_{K_1}^+, \mu_{K_1}^-, \nu_1, \cdots, \nu_{K_2}]
$$

\n
$$
\mathbf{Q} = [\mathbf{q}_1^+, \mathbf{q}_1^-, \cdots, \mathbf{q}_{K_1}^+, \mathbf{q}_{K_1}^-, 0, \cdots 0]
$$

satisfying *within-concepts positive inner product* and *cross-concepts orthogonal* relationships. There exists $0 \leq \kappa$ x, κ y ≤ 1 such that

$$
0<\cos\langle \mu^+_{k_1},\mu^-_{k_1} \rangle \leq \kappa_{\boldsymbol{x}},\ 0<\cos\langle q^+_{k_1},q^-_{k_1} \rangle \leq \kappa_{\boldsymbol{y}}
$$

We can *naturally* define the high-level concept features $a_k := (\mu_k^+ + \mu_k^-)/2$ and the low-level semantic label features $b_k := (\mu_k^+ - \mu_k^-)/2$ Also we define $c_k := (q_k^+ + q_k^-)/2$, $d_k := (q_k^+ - q_k^-)/2$.

\triangleright **Polysemous Word Model**. $(\mathcal{D}_x, \mathcal{D}_y, \mathcal{D}_z, \mathcal{D}_{\xi_x}, \mathcal{D}_{\xi_y})$

Then, the z , ξ_x , ξ_y are generated from \mathcal{D}_z , and Gaussian distributions \mathcal{D}_{ξ_x} , \mathcal{D}_{ξ_y} independently. By reparameterization we define

$$
x:=\mathbf{M}z+\xi_x\sim\mathcal{D}_x,\quad y:=\mathbf{Q}z+\xi_y\sim\mathcal{D}_y
$$

\triangleright Concept-specific Prompt Distribution. (\mathcal{D}_S)

$$
\mathcal{D}_S = \sum_{k=1}^{K_1} \left(\pi_k^+ \mathcal{P}_{k,L+1}^+ + \pi_k^- \mathcal{P}_{k,L+1}^- \right)
$$

$$
\mathbf{x}_1 \begin{array}{c} \cdots \\ \cdots \\ \mathbf{x}_L \end{array} \mathbf{x}_L + 1
$$

$$
= \left(\begin{array}{cccc} x_1 & x_2 & \cdots & x_L & x_{\text{query}} \\ y_1 & y_2 & \cdots & y_L & 0 \end{array} \right)
$$

$$
\mathbf{y}_1 \begin{array}{c} \cdots \\ \cdots \\ \mathbf{y}_L \end{array}
$$

where $\pi_k^{\pm} = (2K_1)^{-1}$ denotes the equal chance of $\mathcal{P}_{k,L+1}^{\pm}$, $\mathcal{P}_{k,L+1}^{y_{S_n}}$ represents the k-th conceptspecific prompt distribution; $y_{S_n} \in [\pm 1]$ is the true label of a prompt. Each demo-pair (x_i^n, y_i^n) in $\overline{\mathcal{P}_{k,L+1}^e}$ includes either (μ_k^+, q_k^+) or (μ_k^-, q_k^-) with equal chance. Furthermore, $\forall l \in [L+1]$, $\mathbb{P}(z_{l, \neg (2k-1)\vee 2k)}^n = 1) = K^{-1}$, indicating an equal chance of diverse task-irrelevant feature presence.

Figure 7 Transformer Model. $\Psi' \coloneqq \{ \mathbf{W}_{\Omega}^{\mathbf{x}}, \mathbf{W}_{\kappa}^{\mathbf{x}}, \mathbf{W}_{\Omega}^{\mathbf{y}} \}$

$$
\mathbf{H}=\mathbf{E}(S)=\left(\begin{array}{cccc} \bm{x}_1 & \bm{x}_2 & \cdots & \bm{x}_L & \bm{x}_{\text{query}} \\ \bm{y}_1 & \bm{y}_2 & \cdots & \bm{y}_L & \mathbf{0} \end{array}\right)\coloneqq (\mathbf{h}_1,\mathbf{h}_2,\cdots,\mathbf{h}_{\text{query}}\,)\in\mathbb{R}^{(d_\mathcal{X}+d_\mathcal{Y})\times(L+1)}
$$

$$
f(\mathbf{H}; \Psi) = \mathbf{r}^{\top} \sigma_R (\mathbf{W}_O \operatorname{attn}(\mathbf{H}; \Psi)),
$$

\n
$$
\operatorname{attn}(\mathbf{H}; \Psi) = \sum_{l=1}^{L} \mathbf{W}_V \mathbf{h}_l \sigma_S \left((\mathbf{W}_K \mathbf{h}_l)^{\top} \mathbf{W}_Q \mathbf{h}_{query} \right),
$$

\n
$$
\mathbf{W}_Q = \begin{pmatrix} \mathbf{W}_Q^x & * \\ * & * \end{pmatrix}, \quad \mathbf{W}_K = \begin{pmatrix} \mathbf{W}_K^x & * \\ * & * \end{pmatrix}, \quad \mathbf{W}_V = \begin{pmatrix} * & * \\ * & \mathbf{W}_V^y \end{pmatrix} \quad \mathbf{W}_O = (* \mathbf{W}_O^y),
$$

where $\mathbf{W}_{Q}^{x}, \mathbf{W}_{K}^{x} \in \mathbb{R}^{d_{\mathcal{X}} \times d_{\mathcal{X}}}, \mathbf{W}_{V}^{y} \in \mathbb{R}^{(m_{v}-d_{\mathcal{X}}) \times d_{\mathcal{Y}}}, \mathbf{W}_{Q}^{y} \in \mathbb{R}^{m \times d_{\mathcal{Y}}}$. Here, we set the elements other than \mathbf{W}_{Ω}^{x} , \mathbf{W}_{K}^{x} , \mathbf{W}_{V}^{y} and \mathbf{W}_{Ω}^{y} to be zero. Besides, we fix \mathbf{W}_{V}^{y} to be $\mathbf{I}_{(m_{v}-d_{x})\times d_{v}}$. We sample r_i from a uniform distribution Unif $\{-1, 1\}$ and fixed during the training process. Based on this setting, the trainable part we need to consider is actually $\Psi' \coloneqq {\{\mathbf{W}_{Q}^{x}, \mathbf{W}_{K}^{x}, \mathbf{W}_{Q}^{y}\}}$. This problem remains highly non-convex and challenging.

Ø **Stochastic Gradient Descent**.

$$
L_{\mathcal{B}_t}(\Psi) = L_{\mathcal{B}_t}(\Psi') \coloneqq \frac{1}{B} \sum_{n \in \mathcal{B}_t} \ell \left(y_{S_n} \cdot f(\mathbf{H}; \Psi) \right) + \frac{\lambda}{2} \|\Psi'\|_F^2,
$$

where $\ell(z) = \log(1 + \exp(-z))$ $\|\Psi'\|_F^2$ represents $\|\mathbf{W}_Q^{\mathbf{x}}\|_F^2 + \|\mathbf{W}_K^{\mathbf{x}}\|_F^2 + \|\mathbf{W}_Q^{\mathbf{y}}\|_F^2$ $\eta_t = \frac{2}{\lambda(\gamma + t)}$

Initialization Setting. All initial values of W^y are sampled from a i.i.d. Gaussian distributions with mean 0 and variance σ_1^2 . The initialization of \mathbf{W}_{Ω}^x and \mathbf{W}_{κ}^x are diagonal matrices $\sigma_0 \mathbb{I}$

Algorithm 1 Training algorithm

Input: Training distribution \mathcal{D}_S , Test distribution \mathcal{D}^* , Batch size B, step size $\eta_t = \frac{2}{\lambda(\gamma + t)}$, stopping criterion ε and total epochs T. Initialize model parameters $\Psi^{\prime(0)}$. for $t = 0, 1, ..., T - 1$ do
If $L_{\mathcal{D}^*}^{0-1}(\Psi^{(t)}) \leq \varepsilon$ stop else continue. Randomly sample mini batches B_t of size B from D_s . Update model parameters: $\Psi'^{(t+1)} = \Psi'^{(t)} - \eta_t \nabla_{\Psi'} L_{\mathcal{B}_t}(\Psi'^{(t)}).$ end for

- \triangleright Motivation & Background
	- Ø *Observed linear latent geometry of LLM*
	- Ø *Technical limitation of currentwork*
- \triangleright Introduction
- Ø Problem & Model Formulation
	- Ø *Polysemous Word Model & Concept-specific Prompt Distribution*
	- Ø *Transformer & SGD setup*
- \triangleright Main Result
	- \triangleright Exponential Convergence
	- \blacktriangleright **OOD** results
- \triangleright Experiments
- \triangleright Conclusion

Main Result

Ø **Exponential Convergence of 0-1 loss under low-noise condition**

Theorem 1. Under Condition 1, for $\forall \varepsilon > 0$, $\exists C1, C2 > 0$, with probability no less than $1 - \delta$, for $T \geq \hat{T}$, we have

$$
L_{\mathcal{D}^*}^{0-1}(\Psi^{(T)}) \le \exp\left(-\frac{C_2 \nu^2 m \lambda^2 (\gamma + T)}{K_1 \|\mathbf{q}\|^2 ((L-1)\|\mathbf{u}\|^2 + 1)}\right).
$$

$$
\sum \text{ Thus after } T\varepsilon = \frac{K_1 ||q||^2 ((L-1)||u||^2 + 1)}{C_2 \nu^2 m \lambda^2} \log(\frac{1}{\varepsilon}) \text{ iterations, we have}
$$
\n
$$
L_{\mathcal{D}^*}^{0-1}(\Psi^{(T)}) \le \varepsilon
$$

 \triangleright Importantly, \hat{T} is independent of ε and does not affect the convergence rate as $\varepsilon \to 0$.

Main Result

Ø **Out-of-Distribution-Generalization.**

Proposition 1. Under Condition 1, for $\forall \varepsilon > 0$, The learned model satisfies $L_{\mathcal{D}_{\infty}^{*}}^{0-1}(\Psi^{(T^*)}) \leq \varepsilon$ for T* \geq T ε , where the \mathcal{D}_{S}^{*} can enjoy the following distribution shifts.

- \triangleright The prompt length can be any positive integer.
- $\triangleright \mathcal{D}^*$ can enjoy any shift, with each prompt sharing ≥ 1 co-concept, and equal chance to be ± 1 .
- $\triangleright \quad \mathcal{D}_{x}^{*} \times \mathcal{D}_{y}^{*}$ can enjoy great shift. The new M* and Q* satisfying that

$$
u_k^{\pm^{\, \ast}} \,\,=\,\, a_k^{\ast} \pm b_k^{\ast}, \quad q_k^{\pm^{\, \ast}} \,\,=\,\, c_k^{\ast} \pm d_k^{\ast}, \quad {\nu_k}_2 \,\,=\,\, {\nu_k^{\ast}}
$$

The a_k^* , $b_{k'}^*$, $c_{k'}^*$, $d_{k'}^*$, ν_{k_2} are any vectors in the conic hulls of $\{a_k\}_{k=1}^{K_1}, \{b_k\}_{k=1}^{K_1}, \{c_k\}_{k=1}^{K_1}, \{d_k\}_{k=1}^{K_1}, \{\pm \nu_k\}_{k=1}^{K_2}$

15 respectively. $||b_k^*|| \ge ||a_k^*|| = \Theta(||u||)$, $||d_k^*|| \ge ||c_k^*|| = \Theta(||q||)$ and $v_{k_0}^* = \Theta(||u||)$

Main Result

Ø **Proof Strategy: Convergence of Expectation - Exponential Variance Reduction [1]**

In a big picture, we **extend the standard techniques in SGD** [1] to our model under **strong low-noise condition**

(i) The expected estimator would fastly converge; (ii) The variance can connverge exponentially by the property of tails

With a good initialization and a symmetric low-noise prompt distribution, we can decompose the expected (over the stochastic batches) NN matrices along concept and semantic directions.

 $16\,$ [1] Nitanda and Suzuki. Stochastic gradient descentwith exponential convergence rates of expected classification errors. In AISTATS, 2019.

- \triangleright Motivation & Background
	- Ø *Observed linear latent geometry of LLM*
	- Ø *Technical limitation of currentwork*
- \triangleright Introduction
- Ø Problem & Model Formulation
	- Ø *Polysemous Word Model & Concept-specific Prompt Distribution*
	- Ø *Transformer & SGD setup*
- \triangleright Main Result
	- Ø *Exponential Convergence*
	- Ø *OOD results*

\triangleright Experiments

 \triangleright Conclusion

Experiments

In-Distribution Test Distribution.

Figure 2: Learning dynamics: (i) training and test loss; (ii) correct attention weight; (iii) maximum values of $\alpha_{Q,s} \cdot \alpha_{K,s}$, $\beta_{Q,s} \cdot \beta_{K,s}$, maximum values of the complement products $\tau_{Q,r} \cdot \tau_{K,r}$ or $\rho_{Q,2} \cdot \rho_{K,2}$, and maximum values of product-with-noise $(\mathbf{W}_K^{\mathbf{x}} \xi_{\mathbf{x}})^{\top} \mathbf{W}_Q^{\mathbf{x}} \xi_{\mathbf{x}}$; (iv) maximum values of $\alpha_{O(i_1),k}$ and $|\beta_{O(i_1),k}|$, maximum values of the complement coefficients $\rho_{O(i_1),w}$ and maximum values of product-with-noise $\mathbf{W}_{Q_{(i,j)}}^{\mathbf{y}} \xi_{\mathbf{y}}$. The parameter settings are: $L = 4$, $K_1 = 2$, $K = 104$, $n_{\text{test}} = 5000, d_{\mathcal{X}} = d_{\mathcal{Y}} = 1000, m = 50, ||\mathbf{u}|| = ||\mathbf{q}|| = 10, \forall k \in [K_1], \langle \mu_k^+, \mu_k^- \rangle/||\mathbf{u}||^2 =$ $\langle q_k^+, q_k^- \rangle / ||\mathbf{q}||^2 = 0.5, \sigma_0 = 0.1, \sigma_1 = 0.01, \sigma_{\xi} = 0.01, \lambda = 0.002, B = 16, \gamma = 10000$, and the total training epochs is 100.

Experiments

OOD Test Distribution.

(c) OOD Scenario 2: 0.8 fraction for the first and 0.2 fraction for the second concept during testing.

(d) OOD Scenario 3: Shift the data as $\mu_1^{\pm} = a_1 \pm b_2$ and $\mu_2^{\pm *} = a_2 \pm b_1$ during testing.

Figure 3: Learning dynamic in three OOD scenarios. The training settings and plotting methods are identical to those used in Figure 2 . The consistency of the results validates Proposition 1.

- \triangleright Motivation & Background
	- Ø *Observed linear latent geometry of LLM*
	- Ø *Technical limitation of currentwork*
- \triangleright Introduction
- Ø Problem & Model Formulation
	- Ø *Polysemous Word Model & Concept-specific Prompt Distribution*
	- Ø *Transformer & SGD setup*
- \triangleright Main Result
	- Ø *Exponential Convergence*
	- Ø *OOD results*
- \triangleright Experiments

Conclusion

Conclusion

Ø **Advancing theTheory of Transformers and ICL**.

We provide a fine-grained analysis of the learning dynamics for a three-layer transformer model, comprising an **softmax** attention followed by a **ReLU**-activated feedforward network. We showcase the asymptotic properties governing the coupled learning of the attention and MLP layers.

Ø **Exponential Convergence of 0-1 Loss**.

Despite the highly non-convex nature of the problem, we are the first to prove an exponential convergence rate for the 0-1 loss utilizing techniques in stochastic optimization literature.

Ø **Connecting Multi-Concept Semantics to Efficient ICL**.

We provably show how the multi-concept encoded linear geometry of representations can enable transformer to conduct certain OOD ICL tasks.

Thanks for Listening