

FIDE: Frequency-Inflated Conditional Diffusion Model for Extreme-Aware Time Series Generation

Asadullah Hill Galib¹, Pang-Ning Tan¹, Lifeng Luo²

¹Department of Computer Science & Engineering, Michigan State University

²Department of Geography, Environment, and Spatial Sciences, Michigan State University

Generative Model

Computer Vision

Introduction

How to apply generative modeling for time series with a special focus on block maxima

Source: Bloomberg; The New York Times

Challenge

Existing models struggle to capture the block maxima distribution

(a) All Values Distribution

(b) Block Maxima Distribution

Comparing the distributions of all values and block maxima values for real and generated samples using DDPM when applied to the synthetic AR(1) data

Contributions

The Rapid Dissipation of Block Maxima

In diffusion models, residual of block maxima dissipates faster than the residual of non-block maxima during the forward process

High Frequency Components Inflation

abrupt block maxima will be preserved by a factor of γ compared to the previous case

FIDE Framework

Experimental Evaluation

Datasets

- AR2: synthetic time series data using autoregressive model of order 2
- Financial Data (Stocks): daily historical Google stocks data from 2004 to 2019
- Energy Data (Appliance Energy): The UCI Appliances energy prediction dataset
- Weather/Climate Data (Daily Minimum Temperature): daily minimum temperatures in Melbourne, Australia, from 1981 to 1990
- Medical Data (ECG5000: Congestive Heart Failure): 20-hour long (5,000 heartbeats) electrocardiogram (ECG) obtained from the Physionet database

Experimental Evaluation

	using the various methods. Bold and <u>Underlined</u> entries denote the best and second-best result							
Probability Density Function (PDF)	Metrics	Methods	AR1	Stock	Energy	Temperature	ECG	
		beta-VAE	0.0211±0.0187	0.1105 ± 0.0188	0.0722 ± 0.0095	0.0140±0.0125	0.1210 ± 0.0214	
		c-beta-VAE	0.0190±0.0125	0.1011±0.0152	0.0710 ± 0.0088	0.0109 ± 0.0098	0.1120 ± 0.0352	
		TimeVAE	0.0015 ± 0.0003	0.1054 ± 0.0071	0.0795 ± 0.0085	0.0096 ± 0.0002	0.0985 ± 0.0078	
		TimeGAN	0.0840 ± 0.0109	0.1411±0.1585	0.0950 ± 0.0089	0.0112 ± 0.0012	0.1620 ± 0.0221	
	JS	cGAN	0.0690 ± 0.0091	0.1211±0.0205	0.0890 ± 0.0093	0.0091 ± 0.0008	0.1440 ± 0.0211	
	Divergence	RealNVP	0.0754±0.0121	0.1185 ± 0.0108	0.0905 ± 0.0084	0.0089 ± 0.0007	0.1411 ± 0.0116	
		Fourier-Flows	0.0612 ± 0.0045	0.1108±0.0195	0.0820 ± 0.0044	0.0078 ± 0.0010	0.1398 ± 0.0202	
		DDPM	0.0010 ± 0.0007	0.0912±0.0062	0.0752 ± 0.0082	0.0082 ± 0.0009	0.1041 ± 0.0122	Concreted date
		Diffusion-TS	0.0011 ± 0.0008	0.0854 ± 0.0045	0.0712 ± 0.0071	0.0077 ± 0.0008	0.1005 ± 0.0108	Generated data
		FIDE (Ours)	0.0004±0.0001	0.0700 ± 0.0061	0.0680 ± 0.0092	0.0007 ± 0.0001	0.0930 ± 0.0082	using FIDF
	KL Divergence	beta-VAE	0.0110 ± 0.0024	0.1947±0.0184	0.1210 ± 0.0146	0.0410 ± 0.0128	0.2020 ± 0.0048	using TIDE
		c-beta-VAE	0.0091 ± 0.0012	0.1744 ± 0.0105	0.1160 ± 0.0174	0.0360 ± 0.0114	0.1880 ± 0.0079	outperformed
		TimeVAE	0.0105 ± 0.0007	0.2514 ± 0.0152	0.1625 ± 0.0095	0.0490 ± 0.0006	0.2254 ± 0.0068	, In a set the set
		TimeGAN	0.1920 ± 0.0156	0.2425 ± 0.0251	0.1590 ± 0.0198	0.0550 ± 0.0145	0.2540 ± 0.0254	baseline
		cGAN	0.1240 ± 0.0122	0.2101±0.0115	0.1510 ± 0.0211	0.0490 ± 0.0125	0.2210 ± 0.0184	methods in
		RealNVP	0.1298 ± 0.0215	0.2295 ± 0.0154	0.1605 ± 0.0310	0.0512 ± 0.0108	0.2305 ± 0.0145	
-05 00 05 10 15 20		Fourier-Flows	0.1235 ± 0.0104	0.2045 ± 0.0255	0.1458 ± 0.0345	0.0505 ± 0.0136	0.2254 ± 0.0141	capturing the
		DDPM	0.0062 ± 0.0008	0.1915±0.0125	0.1120 ± 0.0108	0.0326 ± 0.0090	0.1905 ± 0.0094	
		Diffusion-TS	0.0054 ± 0.0007	0.1889 ± 0.0108	0.1089 ± 0.0115	0.0311 ± 0.0078	0.1894 ± 0.0081	distribution of
		FIDE (Ours)	0.0030±0.0009	0.1504±0.0128	0.0950±0.0098	0.0029±0.0008	$0.1810{\pm}0.0084$	block movimo
	CRPS	beta-VAE	0.1247±0.0189	0.3149±0.0348	0.2410 ± 0.0298	0.1554 ± 0.0214	0.3059 ± 0.0454	DIOCK maxima
		c-beta-VAE	0.1154 ± 0.0151	0.2698 ± 0.0214	0.2574 ± 0.0241	0.1420 ± 0.0311	0.3150 ± 0.0414	
		TimeVAE	0.1511 ± 0.0081	0.2547±0.0155	0.2853 ± 0.1082	0.1847±0.0071	0.3252 ± 0.0204	
		TimeGAN	0.1858 ± 0.0214	0.2825 ± 0.0418	0.2685 ± 0.0284	0.2110 ± 0.0287	0.3240 ± 0.0401	
		cGAN	0.1224±0.0157	0.2689 ± 0.0301	0.2385 ± 0.0187	0.1990±0.0214	0.2985 ± 0.0311	
		RealNVP	0.1325 ± 0.0144	0.2545 ± 0.0258	0.2541 ± 0.0214	0.2014 ± 0.0354	0.2824 ± 0.0425	
		Fourier-Flows	0.1305 ± 0.0254	0.2589 ± 0.0214	0.2415 ± 0.0211	0.1975±0.0251	0.2884 ± 0.0215	
		DDPM	0.0422 ± 0.0084	0.2422 ± 0.0187	0.2199 ± 0.0874	0.1516 ± 0.0211	0.2488 ± 0.0388	
		Diffusion-TS	0.0398 ± 0.0092	0.2358±0.0211	0.2125 ± 0.0454	0.1525 ± 0.0315	0.2415 ± 0.0451	
		FIDE (Ours)	0.0310 ± 0.0098	0.2115 ± 0.0152	0.2085±0.0985	0.0517±0.0082	0.2345 ± 0.0204	

Table 1 Comparison of generated samples' block maxima distribution metrics and predictive score

Experimental Evaluation

Table 1 Comparison of generated samples' predictive score using the various methods.

Bold and Underlined entries denote the best and second-best result

Metrics	Methods	AR1	Stock	Energy	Temperature	ECG
	beta-VAE	0.6350 ± 0.0201	$0.9528 {\pm} 0.0314$	0.7410 ± 0.0187	0.6814 ± 0.0108	$0.9420 {\pm} 0.0142$
	c-beta-VAE	0.6240 ± 0.0145	0.9226 ± 0.0165	$0.7317 {\pm} 0.0163$	0.6718 ± 0.0025	$0.9310{\pm}0.0214$
	TimeVAE	0.6150 ± 0.0104	0.9140 ± 0.0218	$0.7325 {\pm} 0.0195$	0.6723 ± 0.0036	$0.9150 {\pm} 0.0112$
	TimeGAN	0.6050±0.0104	0.8950 ± 0.0198	$0.7280 {\pm} 0.0187$	0.6718 ± 0.0047	0.8960±0.0084
Predictive	cGAN	0.6120 ± 0.0014	0.9354 ± 0.0210	0.7310 ± 0.0147	0.6847 ± 0.0041	$0.9220 {\pm} 0.0191$
Score	RealNVP	0.6884 ± 0.0011	0.9988 ± 0.0354	$0.7898 {\pm} 0.0254$	0.7852 ± 0.0017	$0.9730 {\pm} 0.0215$
	Fourier-Flows	0.6925 ± 0.0031	0.9844 ± 0.0241	$0.7955 {\pm} 0.0088$	0.7871 ± 0.0021	$0.9655 {\pm} 0.0221$
	DDPM	$0.6148 {\pm} 0.0081$	0.8997 ± 0.0111	$0.7350 {\pm} 0.0102$	0.6708 ± 0.0098	0.9121 ± 0.0121
	Diffusion-TS	0.6105 ± 0.0045	0.8912 ± 0.0105	$0.7355 {\pm} 0.0084$	$\overline{0.6708 \pm 0.0108}$	$0.9089 {\pm} 0.0095$
	FIDE (Ours)	0.6081 ± 0.0098	0.8871 ± 0.0104	$0.7240{\pm}0.0087$	0.6694±0.0082	0.9040 ± 0.0112

FIDE accurately replicates the temporal characteristics of the original data for predictive modeling task

Conclusion

- FIDE enhances diffusion models to capture extreme events by
 - preserving block maxima through high-frequency components
 - leveraging GEV distribution
- Superiority of the framework confirmed through experiments on realworld and synthetic data.