# **DARG:** Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph

Zhehao Zhang, Jiaao Chen, Diyi Yang



DARTMOUTH





## **Current LLM Evaluation Landscape**

Mostly rely on **static benchmarks**.

## **Current LLM Evaluation Landscape**

#### Mostly rely on static benchmarks.

Examples: GSM8K, BBQ, BigBench, etc.

## **Current LLM Evaluation Landscape**

#### Mostly rely on static benchmarks.

Examples: GSM8K, BBQ, BigBench, etc.

Limitations:

- Vulnerability to data contamination
- Lack of adaptability to evolving LLM capabilities

• ..

We need to evaluate LLMs dynamically!

| Category<br>Benchmark               | Llama 3.1<br>8B | Gemma 2<br>9B IT          | Llama 3.1<br>70B | GPT 3.5<br>Turbo | Liama 3.1<br>405B | GPT-4<br>Omni | Clau<br>Sor |
|-------------------------------------|-----------------|---------------------------|------------------|------------------|-------------------|---------------|-------------|
| General                             |                 |                           |                  |                  |                   |               |             |
| MMLU Chat (0-shot, CoT)             | 73.0            | 72.3<br>(0-shat, non-CoT) | 86.0             | 69.8             | 88.6              | 88.7          | 8           |
| MMLU PRO (5-shot, CoT)              | 48.3            |                           | 66.4             | 49.2             | 73.3              | 74.0          | 7           |
| IFEval                              | 80.4            | 73.6                      | 87.5             | 69.9             | 88.6              | 85.6          | 8           |
|                                     |                 |                           |                  |                  |                   |               |             |
| Code<br>HumanEval (0-shot)          | 72.6            | 54.3                      | 80.5             | 68.0             | 89.0              | 90.2          | 9           |
| MBPP EvalPlus (base) (0-shot)       | 72.8            | 71.7                      | 86.0             | 82.0             | 88.6              | 87.8          | 9           |
|                                     |                 |                           |                  |                  |                   |               |             |
| Math<br>GSM8K (8-shot, CoT)         | 84.5            | 76.7                      | 95.1             | 81.6             | 96.8              | 96.1          | 9           |
| MATH (0-sho, CoT)                   | 51.9            | 44.3                      | 68.0             | 43.1             | 73.8              | 76.6          | 7           |
|                                     |                 |                           |                  |                  |                   |               |             |
| Reasoning<br>ARC Challenge (0-shot) | 83.4            | 87.6                      | 94.8             | 83.7             | 96.9              | 96.7          | 9           |
| GPQA (0-shot, CoT)                  | 32.8            |                           | 46.7             | 30.8             | 51.1              | 53.6          | 5           |
|                                     |                 |                           |                  |                  |                   |               |             |

Does those numbers reflect their abilities?

## Need for Dynamic Evaluation

• Adapt to LLM evolving capabilities

## Need for Dynamic Evaluation

- Adapt to LLM evolving capabilities
- Generate evaluation data with controlled complexity

## Need for Dynamic Evaluation

- Adapt to LLM evolving capabilities
- Generate evaluation data with controlled complexity
- Less concerns of data contamination issues

## Prior works on dynamic evaluation

- Template-based methods (e.g., DyVal [1])
  - Limited to specific tasks (math, logic)
  - Lack diversity

## Prior works on dynamic evaluation

- Template-based methods (e.g., DyVal [1])
  - Limited to specific tasks (math, logic)
  - Lack diversity
- LLM-based perturbation (e.g., DyVal 2 [2], Benchmark Self-Evolving [3])
  - Low controllability
  - Suffer from LLM instability
  - Difficult to verify quality and correctness

[1] Zhu, Kaijie, et al. "Dyval: Graph-informed dynamic evaluation of large language models." ICLR 2024.
[2] Zhu, Kaijie, et al. "Dyval 2: Dynamic evaluation of large language models by meta probing agents." ICML 2024.
[3] Wang, Siyuan, et al. "Benchmark Self-Evolving: A Multi-Agent Framework for Dynamic LLM Evaluation." arXiv 2024.

DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph

#### **Key Features:**

- Controlled complexity
- Maintained diversity
- Validated labels

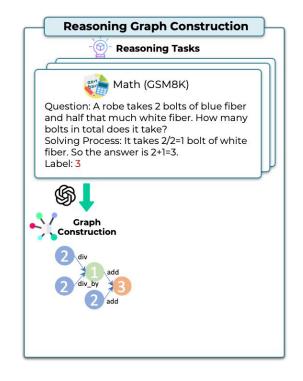
DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph

#### **Key Components:**

- Reasoning Graph Construction
- Graph Perturbation
- New sample generation
  - Graph-to-text Decoding
  - Data Verification

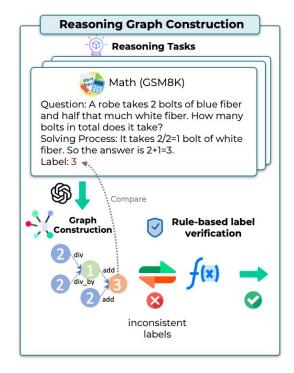
### Reasoning Graph Construction

- Extract underlying reasoning structure from benchmark data
  - Use LLMs with in-context learning for graph construction
- Example reasoning graph: The computational graph for a math problem



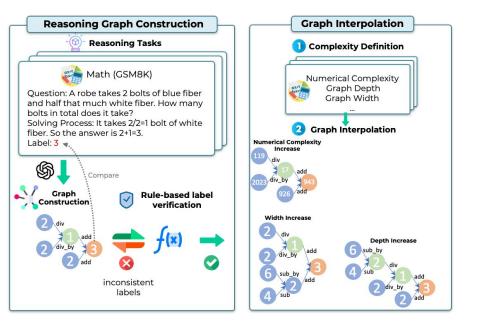
### Reasoning Graph Construction

- Extract underlying reasoning structure from benchmark data
  - Use LLMs with in-context learning for graph construction
- Verify graph accuracy using rule-based label computation

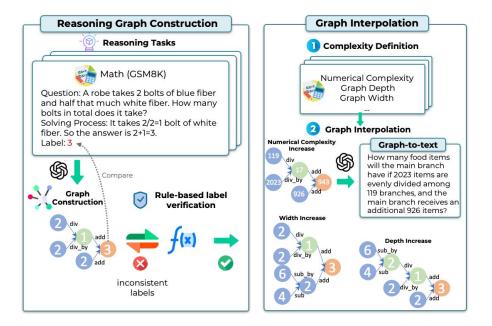


#### Reasoning Graph Perturbation/Interpolation

- Systematically modify graph structure based on complexity levels
  - Example: for math problem:
    - Numerical complexity (e.g., larger numbers)
    - Graph depth
    - Graph width



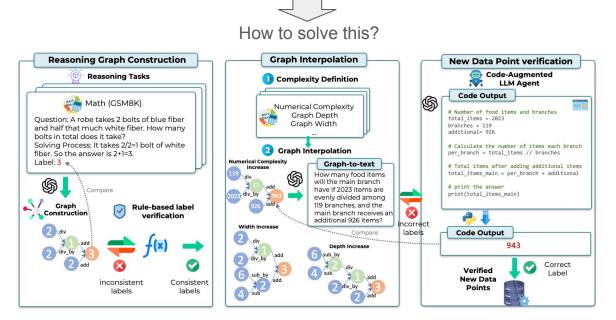
- Graph-to-text decoding using LLMs through in-context learning
  - Maintain consistent language style with original data (Easy: LLMs are good at style mimicking)
  - Encode reasoning graph structure in generated text (non-trivial, the generated new test sample's reasoning graph may be changed)

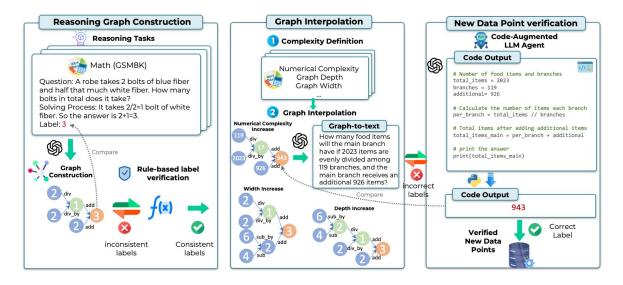


- Graph-to-text decoding using LLMs through in-context learning
  - Maintain consistent language style with original data (Easy: LLMs are good at style mimicking)
  - Encode reasoning graph structure in generated text (non-trivial, the generated new test sample's reasoning graph may be changed)

How to solve this?

- Graph-to-text decoding using LLMs through in-context learning
  - Maintain consistent language style with original data (Easy: LLMs are good at style mimicking)
  - Encode reasoning graph structure in generated text (non-trivial, the generated new test sample's reasoning graph may be changed)





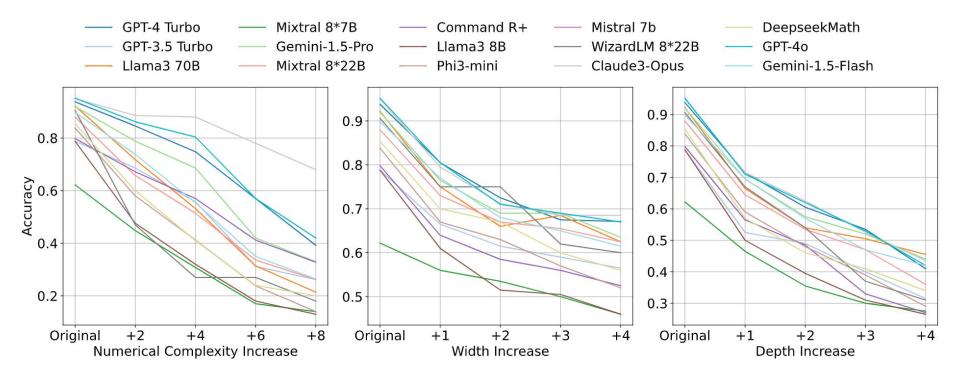
- Graph-to-text decoding using LLMs through in-context learning
  - Code-augmented LLM agent for verification
    - Motivation: SOTA LLMs are good at coding generation and execute code with external interpreter can avoid hallucination
  - Compare computed answers with graph-derived labels
  - Iterative refinement process for incorrect generations

## Reasoning Tasks

| Domain             | Dataset                | Node Definition              | Edge Definition                           | Complexity                                                                      |
|--------------------|------------------------|------------------------------|-------------------------------------------|---------------------------------------------------------------------------------|
| Math Reasoning     | GSM8K [ <u>19</u> ]    | Numbers                      | $\left \{+,-,\times,\div,\ldots\}\right.$ | # of digits in calculation<br>Width; Depth of calculations                      |
| Social Reasoning   | BBQ [75]               | Persons, Attributes          | Relations: 'has'                          | Attributes' polarity<br># of attributes involved                                |
| Spatial Reasoning  | BBH Navigate [91]      | Unit action                  | Sequential order                          | # of actions                                                                    |
| Symbolic Reasoning | BBH Dyck Language [91] | $ \{\},\langle\rangle,[],()$ | Sequential order                          | <ul><li># of brackets in the input</li><li># of brackets in the label</li></ul> |

• The reasoning graph definition in DARG are general and can be applied and extended to other tasks

## Math Reasoning (GSM8K)



## Math Reasoning (GSM8K)

- New Metric:Complexity-Induced Accuracy Retention Rate (CIARR)
  - A higher value indicates greater robustness to complexity increases in that dimension.

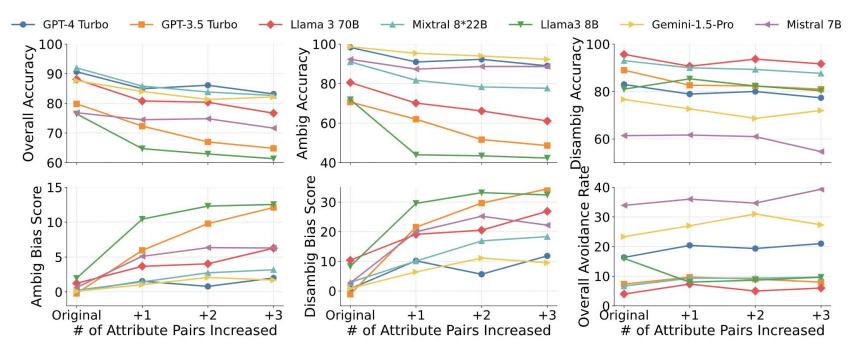
$$\operatorname{CIARR}_{D} = \frac{1}{n-1} \sum_{i=1}^{n-1} \left( \frac{A_{i+1}}{A_{i}} \right) \times 100\%$$

# Math Reasoning (GSM8K)



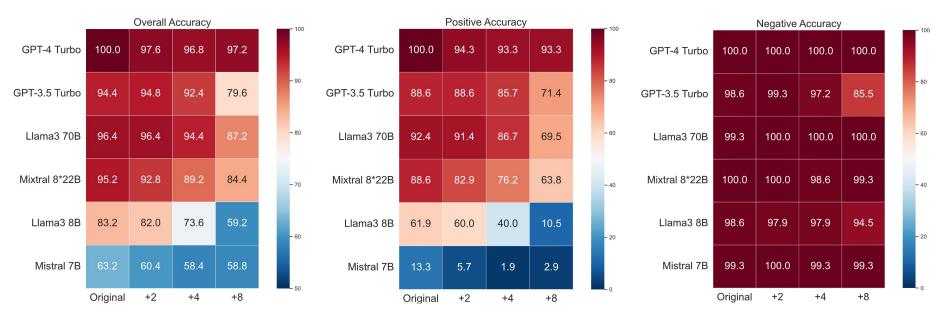
Larger models and MoE models generally have greater robustness towards complexity increase

Social Reasoning (BBQ)



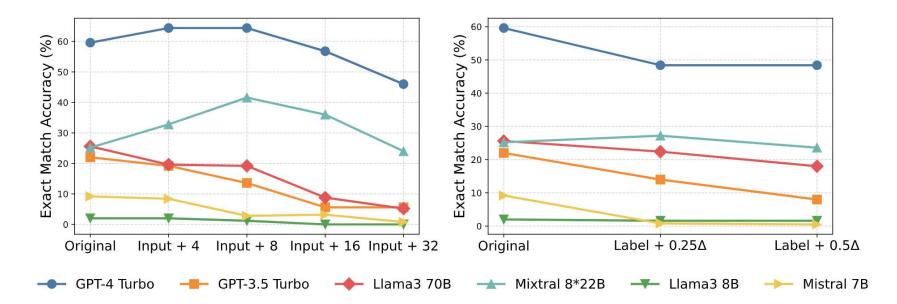
- Key observation: Increased bias with complexity
- Note on over-sensitivity of some models (e.g., GPT-4 Turbo, Gemini-1.5-Pro)

## Spatial Reasoning (BBH Navigate)



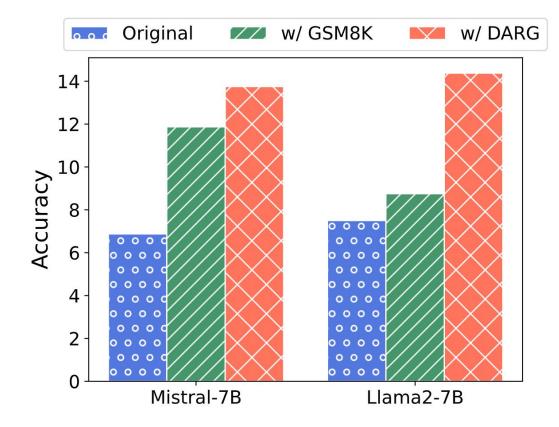
 Highlight: Dramatic decrease in positive accuracy, biases towards generating the negative label

## Symbolic Reasoning (BBH Dick Language)



 Highlight: LLMs show performance decrease when the input the expected output length increase

## Fine-tuning with DARG



- Comparison between fine-tuning with DARG generated data and the same amount of GSM8K's training data.
- Test on an unseen test set with diverse range of complexity
- Highlight: DARG shows potentials in generating effective training data for LLM improvement

## Conclusion

- DARG: A novel framework for dynamic LLM evaluation
- Reveals performance decline and bias increase with complexity
- Demonstrates the need for adaptive evaluation methods
- Potential impact on LLM Improvement and benchmarking practices