Conditional Density Estimation with Histogram Trees Welcome to our poster at poster session 1: Wed 11 Dec 11 a.m. PST – 2 p.m. PST NeurIPS 2024

Lincen Yang (presenting the slides) & Matthijs van Leeuwen Leiden University, The Netherlands

Why conditional density estimation (CDE)?

• Get the full conditional distribution P(Y|X), which provides more information than regression E(Y|X).

Figure from: Takeuchi, Ichiro, Kaname Nomura, and Takafumi Kanamori. "Nonparametric conditional density estimation using piecewise-linear solution path of kernel quantile regression." *Neural Computation* 21.2 (2009): 533-559.

Why conditional density estimation (CDE)?

- Get the full conditional distribution P(Y|X), which provides more information than regression E(Y|X).
- Useful for uncertainty quantification and knowledge discovery.

Figure from: Takeuchi, Ichiro, Kaname Nomura, and Takafumi Kanamori. "Nonparametric conditional density estimation using piecewise-linear solution path of kernel quantile regression." *Neural Computation* 21.2 (2009): 533-559.

Research Gap

- Existing Methods for CDE
 - Kernel-based methods (the standard "shallow" methods for now)
 - Black-box methods (Normalizing Flows, Boosted trees, etc)

dard "shallow" methods for now) Flows, Boosted trees, etc)

Research Gap

- Existing Methods for CDE
 - Kernel-based methods (the standard "shallow" methods for now)
 - Black-box methods (Normalizing Flows, Boosted trees, etc)

- Intrinsically Interpretable models like decision trees have been understudied for conditional density estimation (CDE)!
 - Arguably more interpretable than kernel-based methods

CDTree: Conditional Density Estimation Tree

CDTree: Conditional Density Estimation Tree

CDTree: Conditional Density Estimation Tree

 Modeling the associations between medical costs and demographic & life style feature variables (e.g., smoker or not).

age < 47 & age >= 39 & smoker = False

age < 39 & bmi >= 30.32 & smoker = True

Adopting the minimum description length (MDL) principle

$M^* = \arg\min_{M \in \mathcal{M}} \frac{L(D \mid M) + L(M)}{M \in \mathcal{M}}$

- Adopting the minimum description length (MDL) principle $M^* = \arg\min_{M \in \mathcal{M}} \frac{L(D \mid M) + L(M)}{M \in \mathcal{M}}$
- $L(D \mid M)$: code length in bits needed to encode the data given model M

- Adopting the minimum description length (MDL) principle $M^* = \arg\min_{M \in \mathcal{M}} \frac{L(D \mid M) + L(M)}{L(D \mid M)}$
- $L(D \mid M)$: code length in bits needed to encode the data given model M
- L(M) : code length in bits needed to encode the model itself.

- Adopting the minimum description length (MDL) principle $M^* = \arg\min_{M \in \mathcal{M}} \frac{L(D \mid M)}{M \in \mathcal{M}} + \frac{L(M)}{M \in \mathcal{M}}$
- $L(D \mid M)$: code length in bits needed to encode the data given model M
- L(M) : code length in bits needed to encode the model itself.
- In contrast, traditional optimization score often involves

$$M^* = \arg\min_{\substack{M \in \mathcal{M}}}$$

Loss function Tree Size $+\alpha$ *(likelihood of data)*

- Advantages:
 - Reduce runtime
 - Make the learned CDTree stable, favoring interpretability

• No cross-validation for the hyper-parameter α to control overfitting

• Iteratively grow the tree, WITHOUT pruning

- Iteratively grow the tree, WITHOUT pruning

Advantages: Speed up the training & Robust to "irrelevant" features

Experiment Results

Predictive performance

Table 2: Negative log-likelihoods (smaller is better) on test sets. The best results among interpretable methods are shown in **bold**, and the best results among all interpretable and black-box models are marked by the <u>underlines</u>. The datasets are ordered by their numbers of columns (ascending).

	Interpretable models							Black-box models		
Datasets	CADET	CART-h	CART-k	CKDE	LSCDE	NKDE	Ours	LinCDE	MDN	NF
energy	3.55	3.09	3.06	2.47	3.38	3	2.93	2.93	2.78	2.86
synchrono	-2.93	-1.63	-1.86	<u>-3.59</u>	-1.25	-1.57	-2.11	-1.85	-2.94	-2.64
localizat	-0.23	-0.55	-0.01	-0.26	-0.61	-0.28	-0.66	<u>-0.95</u>	-0.68	-0.43
toxicity	1.8	1.5	1.38	1.32	1.34	1.55	1.53	1.29	1.24	<u>1.23</u>
concrete	4.17	3.75	3.93	3.32	3.66	3.91	3.72	3.47	<u>2.97</u>	3.18
slump	3.42	3.55	3.43	2.35	2.91	3.08	3.34	2.98	<u>2.23</u>	2.39
forestfir	134	3.96	4.39	4.85	4.68	5.55	3.43	4.35	3.26	<u>3.23</u>
navalprop	-3.53	-3.3	-3.66	-2.8	-2.88	-3.19	-3.6	-3.36	<u>-4.12</u>	-3.75
skillcraf	94.4	0.46	-0.42	1.54	1.61	1.56	<u>-1.02</u>	1.26	0.35	1.11
sml2010	6.52	2.85	2.89	<u>1.61</u>	3.14	3.12	2.7	2.97	2.15	2.61
thermogra	2.21	0.66	0.72	0.66	0.94	0.94	0.64	0.59	0.56	<u>0.52</u>
support2	97.3	0.51	0.32	2.09	2.46	2.13	<u>0.29</u>	1.48	1.53	1.24
studentma	3.83	2.65	2.66	2.89	4.19	3.11	2.66	<u>2.59</u>	3.85	3.54
supercond	9.6	3.84	4.36	4.55	4.17	4.19	3.48	3.87	<u>3.33</u>	3.5
rank (all)	8.79	5.68	6.04	5.11	7.46	7.68	4	4.46	2.57	3.21
rank (intp.)	6.07	3.43	3.86	3.14	4.57	4.86	2.07			

Predictive performance

Table 2: Negative log-likelihoods (smaller is better) on test sets. The best results among interpretable methods are shown in **bold**, and the best results among all interpretable and black-box models are marked by the <u>underlines</u>. The datasets are ordered by their numbers of columns (ascending).

	Interpretable models						Black-box models			
Datasets	CADET	CART-h	CART-k	CKDE	LSCDE	NKDE	Ours	LinCDE	MDN	NF
energy	3.55	3.09	3.06	2.47	3.38	3	2.93	2.93	2.78	2.86
synchrono	-2.93	-1.63	-1.86	<u>-3.59</u>	-1.25	-1.57	-2.11	-1.85	-2.94	-2.64
localizat	-0.23	-0.55	-0.01	-0.26	-0.61	-0.28	-0.66	<u>-0.95</u>	-0.68	-0.43
toxicity	1.8	1.5	1.38	1.32	1.34	1.55	1.53	1.29	1.24	<u>1.23</u>
concrete	4.17	3.75	3.93	3.32	3.66	3.91	3.72	3.47	<u>2.97</u>	3.18
slump	3.42	3.55	3.43	2.35	2.91	3.08	3.34	2.98	<u>2.23</u>	2.39
forestfir	134	3.96	4.39	4.85	4.68	5.55	3.43	4.35	3.26	<u>3.23</u>
navalprop	-3.53	-3.3	-3.66	-2.8	-2.88	-3.19	-3.6	-3.36	<u>-4.12</u>	-3.75
skillcraf	94.4	0.46	-0.42	1.54	1.61	1.56	<u>-1.02</u>	1.26	0.35	1.11
sml2010	6.52	2.85	2.89	<u>1.61</u>	3.14	3.12	2.7	2.97	2.15	2.61
thermogra	2.21	0.66	0.72	0.66	0.94	0.94	0.64	0.59	0.56	<u>0.52</u>
support2	97.3	0.51	0.32	2.09	2.46	2.13	<u>0.29</u>	1.48	1.53	1.24
studentma	3.83	2.65	2.66	2.89	4.19	3.11	2.66	<u>2.59</u>	3.85	3.54
supercond	9.6	3.84	4.36	4.55	4.17	4.19	3.48	3.87	<u>3.33</u>	3.5
rank (all)	8.79	5.68	6.04	5.11	7.46	7.68	4	4 46	2.57	3.21
rank (intp.)	6.07	3.43	3.86	3.14	4.57	4.6	2.07			

Predictive performance

Table 2: Negative log-likelihoods (smaller is better) on test sets. The best results among interpretable methods are shown in **bold**, and the best results among all interpretable and black-box models are marked by the <u>underlines</u>. The datasets are ordered by their numbers of columns (ascending).

	Interpretable models							Dlack box models		
Datasets	CADET	CART-h	CART-k	CKDE	LSCDE	NKDE	Ours	LinCDE	MDN	NF
energy	3.55	3.09	3.06	2.47	3.38	3	2.93	2.93	2.78	2.86
synchrono	-2.93	-1.63	-1.86	<u>-3.59</u>	-1.25	-1.57	-2.11	-1.85	-2.94	-2.64
localizat	-0.23	-0.55	-0.01	-0.26	-0.61	-0.28	-0.66	<u>-0.95</u>	-0.68	-0.43
toxicity	1.8	1.5	1.38	1.32	1.34	1.55	1.53	1.29	1.24	<u>1.23</u>
concrete	4.17	3.75	3.93	3.32	3.66	3.91	3.72	3.47	<u>2.97</u>	3.18
slump	3.42	3.55	3.43	2.35	2.91	3.08	3.34	2.98	<u>2.23</u>	2.39
forestfir	134	3.96	4.39	4.85	4.68	5.55	3.43	4.35	3.26	<u>3.23</u>
navalprop	-3.53	-3.3	-3.66	-2.8	-2.88	-3.19	-3.6	-3.36	<u>-4.12</u>	-3.75
skillcraf	94.4	0.46	-0.42	1.54	1.61	1.56	<u>-1.02</u>	1.26	0.35	1.11
sml2010	6.52	2.85	2.89	<u>1.61</u>	3.14	3.12	2.7	2.97	2.15	2.61
thermogra	2.21	0.66	0.72	0.66	0.94	0.94	0.64	0.59	0.56	<u>0.52</u>
support2	97.3	0.51	0.32	2.09	2.46	2.13	<u>0.29</u>	1.48	1.53	1.24
studentma	3.83	2.65	2.66	2.89	4.19	3.11	2.66	<u>2.59</u>	3.85	3.54
supercond	9.6	3.84	4.36	4.55	4.17	4. <u>19</u>	3.48	3.87	<u>3.33</u>	3.5
rank (all)	8.79	5.68	6.04	5.11	7.46	7. 8	4	4.46	2 57	3.21
rank (intp.)	6.07	3.43	3.86	3.14	4.57	4.80	2.07			

Model complexity: tree sizes

Figure: the number of leaves for tree-based methods

Conclusions

 We developed CDTree, the first dedicated decision tree method for non-parametric conditional density estimation.

Conclusions

- We developed CDTree, the first dedicated decision tree method for non-parametric conditional density estimation.
- We have demonstrated its competitive predictive performance and interpretability.

Conclusions

- We developed CDTree, the first dedicated decision tree method for non-parametric conditional density estimation.
- We have demonstrated its competitive predictive performance and interpretability.

- Github: https://github.com/ylincen/CDTree
- Paper: https://arxiv.org/pdf/2410.11449

Poster session 1: Wed 11 Dec 11 a.m. **PST** – 2 p.m. **PST**