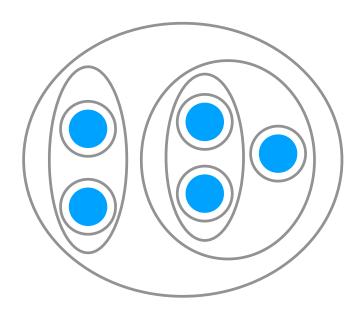
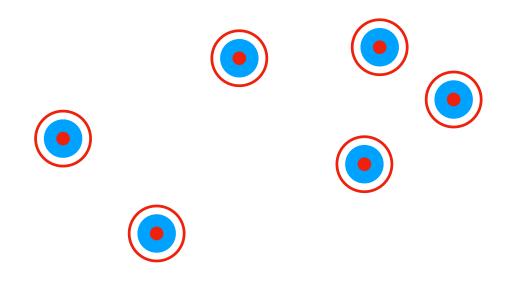
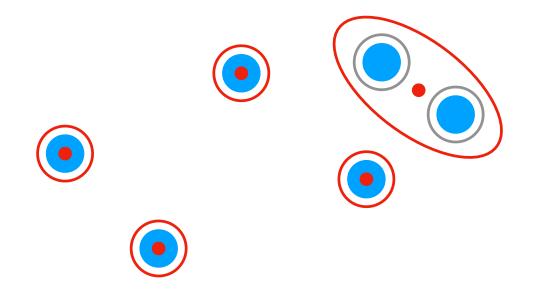
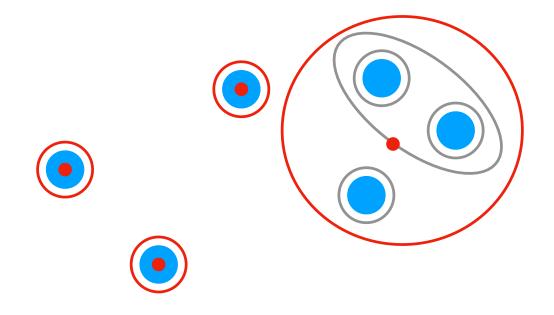

Efficient Centroid-Linkage Clustering

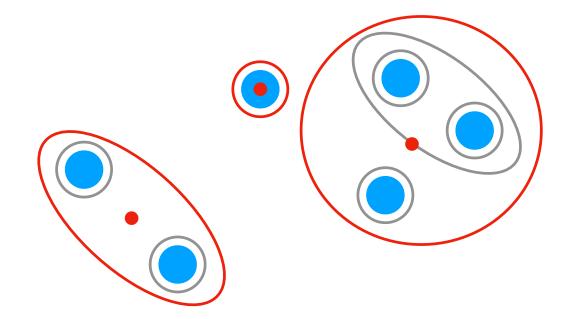
MohammadHossein Bateni, Laxman Dhulipala, Willem Fletcher, Kishen N Gowda, D Ellis Hershkowitz, Rajesh Jayaram, Jakub Łącki

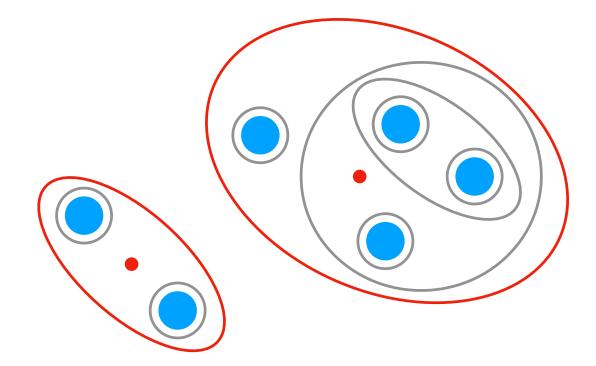

Centroid

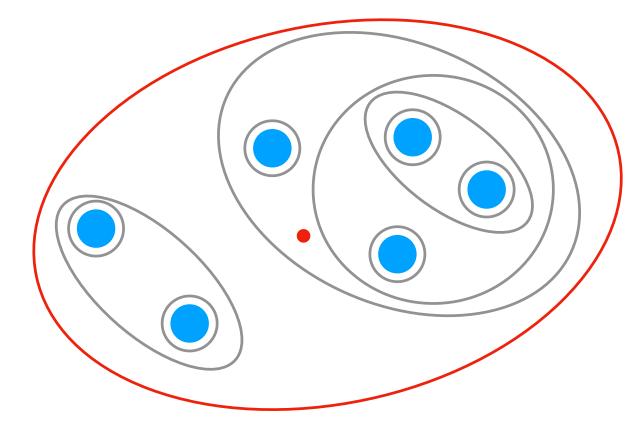

Hierarchical Agglomerative Clustering (HAC)

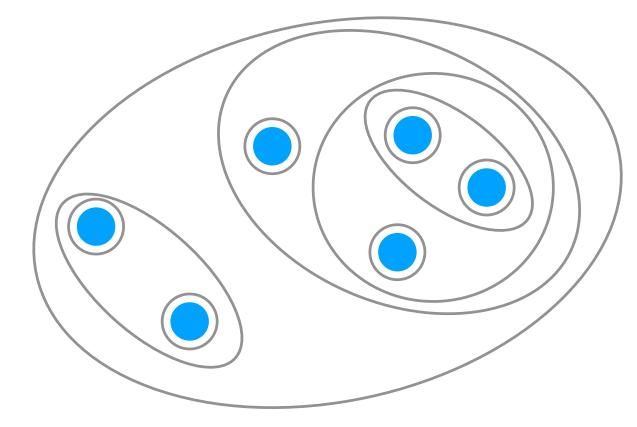

Commonly used form of hierarchical clustering
Use cases include computational biology and computer vision




Centroid HAC


- •Initialize $\mathscr{C} = \{\{p\} \mid p \in P\}$
- •While $|\mathscr{C}| > 1$:
 - •Merge some \hat{C}_1 and \hat{C}_2 where
 - $D\left(\operatorname{cent}(\hat{C}_1),\operatorname{cent}(\hat{C}_2)\right) = \min_{C_1,C_2 \in \mathscr{C}} D\left(\operatorname{cent}(C_1),\operatorname{cent}(C_2)\right)$





c-Approximate HAC

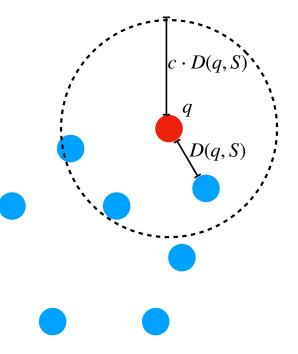
Generally impossible to beat quadratic time with exact HACApproximate HAC lets us find sub-quadratic algorithms

c-Approximate HAC

Approximate HAC:

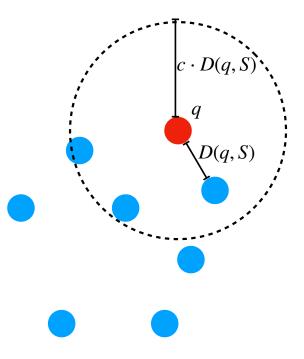
- •Initialize $\mathscr{C} = \{\{p\} \mid p \in P\}$
- •While $|\mathscr{C}| > 1$:
 - •Merge some \hat{C}_1 and \hat{C}_2 where

$$D\left(\operatorname{cent}(\hat{C}_1),\operatorname{cent}(\hat{C}_2)\right) = \operatorname{\mathbf{c}} \cdot \min_{C_1, C_2 \in \mathscr{C}} D\left(\operatorname{cent}(C_1), \operatorname{cent}(C_2)\right)$$


Fast Centroid HAC

Theorem: For *n* points in \mathbb{R}^d there exists an algorithm for centroid HAC that runs in time $\tilde{O}(n^{1+O(1/c^2)})$.

Dynamic Approximate Nearest Neighbor Search (ANNS)

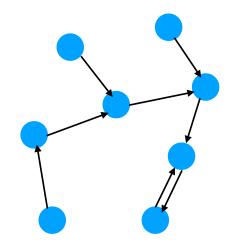

A Dynamic c-approximate NNS data structure \mathcal{N} maintains a dynamically updated set $S \in \mathbb{R}^d$ and given a query point q returns a point $p \in S$ such that:

 $D(q, p) \le c \cdot D(q, S)$

Dynamic Approximate Nearest Neighbor Search (ANNS)

Theorem: There exists a dynamic c-approximate ANNS data structure that supports insertions, deletion, and queries in time $\tilde{O}(n^{1/c^2+o(1)})$.

Fast Approximate Centroid HAC


 $\bullet \mathrm{Let}\ \mathscr{N}$ be a dynamic ANNS data structure

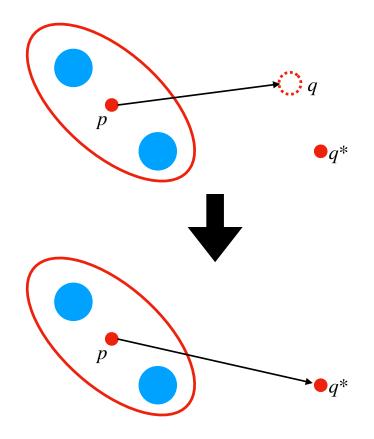
•For every point $p \in P$, find a near neighbor q and insert

this pair into a priority queue Q based on D(p,q)

•While Q is not empty:

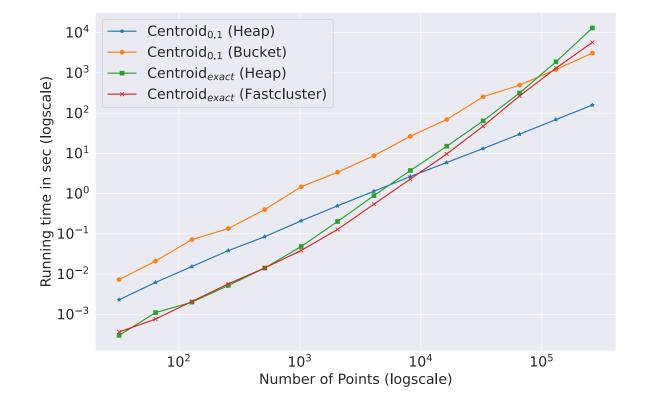
 $\bullet \mbox{Dequeue}$ the shortest distance (p,q,D(p,q)) from Q

•...


Fast Approximate Centroid HAC

- $\bullet \mathsf{If}\, p \mathsf{ and } q \mathsf{ are both active centroids:}$
 - $\bullet \mathsf{Merge}\, p \ \mathsf{and} \ q$

Fast Approximate Centroid HAC


- If p is an active centroid:
 - •Find a new near neighbor q^*
 - $\bullet \text{ If } D(p,q^*) \leq (1+\epsilon) \cdot D(p,q) \text{:}$
 - $\bullet \mathsf{Merge}\, p \ \mathsf{and} \ q^*$
 - •Else: Add $(p,q^*,D(p,q^*))$ to Q

Experiments: Methods

- •We use the same meta-algorithm as for our theoretical results
- •Replace the ANNS data structure with one the works well in practice
- Practical ANNS based on DiskANN

Experiments: Runtime

Experiments: Quality

	Dataset	Centroid _{0.1}	Centroid _{0.2}	Centroid _{0.4}	Centroid _{0.8}	Exact Centroid
ARI	iris	0.759	0.746	0.638	0.594	0.759
	wine	0.352	0.352	0.402	0.366	0.352
	cancer	0.509	0.526	0.490	0.641	0.509
	digits	0.589	0.571	0.576	0.627	0.559
	faces	0.370	0.388	<u>0.395</u>	0.392	0.359
	mnist	<u>0.270</u>	0.222	0.218	0.191	0.192
	birds	0.449	0.449	0.442	<u>0.456</u>	0.441
	Avg	<u>0.471</u>	0.465	0.452	0.467	0.453
IMN	iris	0.803	0.795	0.732	0.732	0.803
	wine	0.424	0.424	0.413	0.389	0.424
	cancer	0.425	0.471	0.459	0.528	0.425
	digits	0.718	0.726	0.707	0.754	0.727
	faces	0.539	0.534	0.549	0.549	<u>0.556</u>
	mnist	0.291	0.282	0.306	<u>0.307</u>	0.250
	birds	0.748	0.747	0.756	<u>0.764</u>	0.743
	Avg	0.564	0.569	0.560	0.575	0.561