

The Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS 2024)

Toxicity Detection for Free

Zhanhao Hu, Julien Piet, Geng Zhao, Jiantao Jiao, David Wagner

Our goal:

- Alleviate safety concerns in LLMs by detecting toxicities
- Computationally efficient
- High performance

Previous approach:

- Human alignment: Reinforcement Learning from Human Feedback (RLHF)
- Finetuning detection models: OpenAI Moderation API, LlamaGuard...
- Query ChatGPT...

Overview:

- We develop Moderation Using LLM Introspection (MULI), a low-cost toxicity detector that surpasses SOTA detectors under multiple metrics.
- We highlight the importance of evaluating the TPR at low FPR
- We reveal that there is abundant information hidden in the LLMs' outputs

Motivation:

 Information hidden in the LLMs' outputs can be extracted to distinguish between toxic and benign prompts.

Toy model:

• Calculate the probability of refusal (PoR)

$$\operatorname{PoR}(x) = \frac{1}{100} \sum_{i=1}^{100} \mathbbm{1}[r_i \text{ is a refusal}],$$

• Extract the probability of starting with Sorry

Toy model evaluation:

• Calculate the probability of refusal (PoR)

$$\operatorname{PoR}(x) = \frac{1}{100} \sum_{i=1}^{100} \mathbb{1}[r_i \text{ is a refusal}],$$

• Extract the probability of starting with Sorry

	Accopt	AUPRC	TPR@FPR $_{10\%}$	$TPR@FPR_{1\%}$	$TPR@FPR_{0.1\%}$
PoR_1	78.0	71.4	0.0	0.0	0.0
PoR_{10}	81.0	77.1	0.0	0.0	0.0
PoR_{100}	80.5	79.3	50.0	0.0	0.0
LogitsSorry	81.0	76.5	30.0	9.0	5.0
Logits _{Cannot}	75.5	79.3	45.0	13.0	10.0
LogitsI	78.5	83.8	47.0	31.0	24.0

Table 1: Effectiveness of the toy models

MULI:

• A linear model on the LLM logits

 $SLR(x) = \mathbf{w}^T f(l(x)) + b.$

 $f^*(l) = \operatorname{Norm}(\ln(\operatorname{Softmax}(l)) - \ln(1 - \operatorname{Softmax}(l))),$

• Train by linear regression + L-1 regularization

$$\min_{\mathbf{w},b} \sum_{\{x,y\} \in \mathcal{X}} \operatorname{BCE}(\operatorname{Sigmoid}(\operatorname{SLR}(x)), y) + \lambda \|w\|_{1}$$

Evaluation:

Figure 5: TPRs versus FPRs in logarithmic scale. (a) ToxicChat; (b) LMSYS-Chat-1M.

Test	AUPRC		TPR@FPR _{0.1%}	
Training	ToxicChat	LMSYS-Chat-1M	ToxicChat	LMSYS-Chat-1M
ToxicChat	91.29	95.86	42.54	31.31
LMSYS-Chat-1M	79.62	98.23	33.43	66.85

Table 4: Cross-dataset performance

Evaluation:

• MULI does not require much data for training.

Figure 7: Results of MULI with different training set sizes on ToxicChat by (a) AUPRC; (b) TPR@FPR_{0.1%}. The dashed lines indicate the scores of LlamaGuard and OMod.

Evaluation:

• MULI relies on the base LLM's ability

Figure 6: Security score of different models versus (a) AUPRC; (b) TPR@FPR_{0.1%}.

Thank you!

For more details, please look at our paper

Zhanhao Hu, Julien Piet, Geng Zhao, Jiantao Jiao, David Wagner

{huzhanhao,julien.piet,gengzhao,jiantao,daw}@berkeley.edu