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• Yes(?), for trained sequence lengths.
• ≈ In-Distribution Generalization

• Length Generalization (LG)
• “Train Short, Test Long.” ≈ Out-of-Distribution Generalization
• Proxy to study LLM’s algorithmic understanding capability

• In terms of LG, Yes and No.
• Can: Sorting, Mode, Counting, Copy/Reverse w/o duplicates, ...
• Can’t: Addition, Multiplication, Copy/Reverse with duplicates, Parity, ...

Can we inject the known structure of a task into a decoder-only 
Transformer so that it can automatically length-generalize?
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Method: Position Coupling
• Main Contribution:

• Trained Transformers on problem lengths 1-30 for several arithmetic & 
algorithmic tasks (Addition, Multiplication, Copy/Reverse with duplicates,...).

• Achieved a robust and near-perfect generalization to problem length 200:      
≈ 6.67× length extrapolation!

NeurIPS 2024   |   Position Coupling 7 / 21



Method: Position Coupling
• Main Contribution:

• Trained Transformers on problem lengths 1-30 for several arithmetic & 
algorithmic tasks (Addition, Multiplication, Copy/Reverse with duplicates,...).

• Achieved a robust and near-perfect generalization to problem length 200:      
≈ 6.67× length extrapolation!

• Established on top of learned APE (e.g., GPT3)
• ... with a task-specific position ID assignment rule.

NeurIPS 2024   |   Position Coupling 8 / 21



Method: Position Coupling
• Main Contribution:

• Trained Transformers on problem lengths 1-30 for several arithmetic & 
algorithmic tasks (Addition, Multiplication, Copy/Reverse with duplicates,...).

• Achieved a robust and near-perfect generalization to problem length 200:      
≈ 6.67× length extrapolation!

• Established on top of learned APE (e.g., GPT3)
• ... with a task-specific position ID assignment rule.

• Suppose we know/have:
• A task we want a decoder-only Transformer to solve by NTP
• Structure between token positions (regardless of sequence length)
• A proper input formatting technique (e.g., reversing, zero-padding)
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Method: Position Coupling (Reverse task)
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• Position ID assignment rule for each input sequence:

a c a b b a c a= EOSInput Tokens
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• Position ID assignment rule for each input sequence:
1) Group input tokens into “chunks” of (consecutive) tokens
2) Assign the same position ID to the tokens at the same “significance”

• Every token in each chunk is of a unique significance
• We assign consecutive position IDs for consecutive tokens in each chunk
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Method: Position Coupling (Reverse task)
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• Position ID assignment rule for each input sequence:
1) Group input tokens into “chunks” of (consecutive) tokens
2) Assign the same position ID to the tokens at the same “significance”

• Every token in each chunk is of a unique significance
• We assign consecutive position IDs for consecutive tokens in each chunk

3) At training time, randomly shift every position ID by a certain offset
• Except for special tokens (BOS, EOS, PAD): fixed by ‘0’
• Hyperparameter: Maximum possible position ID (max_pos)

4) Apply Learned APE! 😉

a c a b b a c a=

5 6 7 8 8 7 6 59
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Input Tokens
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Method: Position Coupling (Addition task)
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• Position ID assignment rule for each input sequence:
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• Position ID assignment rule for each input sequence:
1) Group input tokens into “chunks” of (consecutive) tokens
2) Assign the same position ID to the tokens at the same “significance”

• Every token in each chunk is of a unique significance
• We assign consecutive position IDs for consecutive tokens in each chunk

3) At training time, randomly shift every position ID by a certain offset
• Except for special tokens (BOS, EOS, PAD): fixed by ‘0’
• Hyperparameter: Maximum possible position ID (max_pos)

4) Apply Learned APE! 😉

0 4 9 2 0 7 0=

2 3 4 4 3 2 15
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Method: Position Coupling (Addition task)
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• Position ID assignment rule for each input sequence:
1) Group input tokens into “chunks” of (consecutive) tokens
2) Assign the same position ID to the tokens at the same “significance”

• Every token in each chunk is of a unique significance
• We assign consecutive position IDs for consecutive tokens in each chunk

3) At training time, randomly shift every position ID by a certain offset
• Except for special tokens (BOS, EOS, PAD): fixed by ‘0’
• Hyperparameter: Maximum possible position ID (max_pos)

4) Apply Learned APE! 😉

0 4 9 2 0 7 0=

6 7 8 8 7 6 59
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Experiments
• Addition Task

• Reverse Task (allowing duplicates)
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Experiments
• Addition Task

• Reverse Task (allowing duplicates)

• Takeaway:
• If you have any information about the task structure, use it!
• It will lead a model to have a better inductive bias.
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Theoretical Analyses
• Depth-1 Transformer + Position Coupling is sufficient to solve 
exponentially long additions entirely:

• The proof is constructive.
• In our construction, if 𝑑 = 512, the maximum solvable length is ≈ 2.26×10!".
• Obviously extends to larger architectures with more layers & attention heads.
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Theorem 5.1. There exists a 1-layer 2-head decoder-only Transformer 
with Position Coupling that solves the addition task. Here, the operand 
length is at most 2𝒪 " , where 𝑑 is the embedding dimension.



Theoretical Analyses
• Depth-1 Transformer + Position Coupling is sufficient to solve 
exponentially long additions entirely:

• The proof is constructive.
• In our construction, if 𝑑 = 512, the maximum solvable length is ≈ 2.26×10!".
• Obviously extends to larger architectures with more layers & attention heads.
• In contrast, we prove that any depth-1 decoder-only Transformer without positional 
information (i.e., NoPE) cannot solve permutation-sensitive tasks (e.g., addition, 
multiplication, copy...) (Proposition 5.2.)
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Theorem 5.1. There exists a 1-layer 2-head decoder-only Transformer 
with Position Coupling that solves the addition task. Here, the operand 
length is at most 2𝒪 " , where 𝑑 is the embedding dimension.
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🪧
Poster Session #6

Fri 13 Dec 4:30 p.m. PST — 7:30 p.m. PST

github.com/HanseulJo/position-couplingarxiv.org/abs/2405.20671

Check out our camera-ready version 📑 including:
• A striking similarity between our theoretical construction and actual trained Transformers
• Ablations on trained lengths, architectures, input formats, and more
• Results on more tasks, e.g., “Nx2” Multiplication, two-dimensional task (“minesweeper generator”)
• Comparison & Combination with Rotary PE


