One-shot Federated Learning via Synthetic Distiller-Distillate Communication

Junyuan Zhang, Songhua Liu, Xinchao Wang National University of Singapore

Challenges and current solution for one-shot FL

- **Data heterogeneity**: Data varies among institutions (amount, quality, imaging equipment/parameters, etc.), resulting in inconsistent client models.
- Methods based on weight aggregation fall short in accuracy.
- Methods based on Data-free knowledge distillation demonstrate comparable results.

Challenges for DFKD one-shot FL

- Two-tier information loss:
 - 1 Local training (from local data to client model)
 - 2 Data synthesis (from ensemble model to inversed data)
- Low quality of synthetic data:
 - Inconsistent client models caused by data heterogeneity, obscure correct predictions.

We propose to directly transmit synthetic data

- First Stage: Core-Set selection to extract diverse and informative Core-Set from clients' local data domains.
- Second Stage: Distillate synthesis to synthesize informative, privacy-enhanced, and communication-efficient distillates for server-side training.

We propose to directly transmit synthetic data

- First Stage: Core-Set selection to extract diverse and informative Core-Set from clients' local data domains.
 - Find the Core-Set with highest information entropy: $(X_s, Y_s) = \arg \max_{X_v} I_v(X_t \to Y_t)$
 - Use local model *h* as observer \mathcal{V} and compute score $s : s = -\mathcal{L}(h(x), y)$

We employ two techniques to further distill the Core-Set into distillates

- Second Stage: Distillate synthesis to synthesize informative, privacy-enhanced, and communication-efficient distillates for server-side training.
- 1): Distillate initialization with Fourier transform perturbation
- 2): Distillate synthesis with pre-trained Autoencoders

We employ two techniques to further distill the Core-Set into distillates

- 1): Distillate initialization with Fourier transform perturbation: We alter the amplitude component of Core-Set sample, reducing privacy information while preserving semantic content.
 - Fourier transform on Core-Set sample: $\mathcal{F} = \mathcal{A}(x) \times e^{-j \times \mathcal{P}(x)}$
 - Perturb the amplitude information via linearly interpolating: $\hat{A}(x) = (1 \lambda)A(x) + \lambda A(x^*)$
 - Combine the perturbed amplitude spectrums with the original phase component and use inverse Fourier transform $\mathcal{F}^{-1}(\cdot)$ to generate the perturbed Core-Set sample: $x = \mathcal{F}^{-1}(\hat{\mathcal{A}}(x) \times e^{-j \times \mathcal{P}(x)})$

We employ two techniques to further distill the Core-Set into distillates

- 2): Distillate synthesis with pre-trained Autoencoders: We employ a pre-trained Autoencoder to distill the perturbed Core-Set into generalizable distillates, simultaneously reducing communication costs.
 - Encoding perturbed sample with a pre-trained Autoencoder: $z = \mathcal{E}(x)$
 - Learn a latent z which is as close as possible to the corresponding data in the Core-Set:

$$\arg\min_{\mathbf{z}} \left\| h(\mathcal{D}(\mathbf{z})) - h(\mathbf{x}) \right\|^2$$

• Send the synthetic data to sever for training.

Experiments: General Results

General experimental results under various Data heterogeneity settings

Model	Methods	ImageNette				OpenImage		
		$\alpha = 0.1$	$\alpha = 0.3$	$\alpha = 0.5$	$\alpha = 0.1$	$\alpha = 0.3$	$\alpha = 0.5$	-
ConvNet	Central		89.60			49.73		33.61
	FedAVG	10.68±0.23	10.04 ± 0.10	9.83±0.27	-	-	-	3.08±0.17
	F-DAFL	44.95±0.72	52.23±0.23	58.34±0.55	5.25±0.41	8.89±0.61	$10.28 {\pm} 0.10$	3.36±0.56
	DENSE	42.09±0.68	48.64±1.91	54.74±0.75	11.45±0.08	14.69±0.48	15.15±0.22	7.00 ± 0.84
	Co-Boosting	39.36±0.70	56.15±1.33	58.60±1.02	6.66±0.35	9.81±0.26	10.75±0.11	13.59±0.98
	FedSD2C	50.68±0.20	57.89±0.96	58.17±0.51	20.73±0.12	23.53±0.18	$24.10{\pm}0.30$	23.00±0.24
	Central	0	90.00	1		61.98	2	34.17
ResNet-18	FedAVG	9.86±0.13	10.06 ± 0.20	10.76±0.35	-		-	1.68 ± 0.16
	F-DAFL	37.86±0.38	39.52 ± 0.46	46.06±0.16	7.91±0.22	12.30 ± 0.36	13.31±0.56	12.75±0.14
	DENSE	38.37±0.36	47.85±2.17	49.78±2.11	8.88±0.23	13.05±0.36	17.24±0.43	14.85±0.62
	Co-Boosting	27.06±0.61	28.53±0.86	30.53±1.12	10.29±0.43	14.35±0.93	16.39±0.59	9.52±1.52
	FedSD2C	47.52±0.51	53.69±0.17	55.90±0.53	26.83±0.10	29.92±0.37	31.66±0.85	22.69±0.14

Tab. Accuracy of different one-shot FL methods over three datasets with ConvNet and ResNet-18. indicates. We vary the $\alpha = \{0.1, 0.3, 0.5\}$ to simulate different levels of data heterogeneity

• FedSD2C surpasses all other methods in most settings and demonstrates the independence from model structures

Experiments: Privacy Evaluation

-	-		-					
Privacy-preserving	ImageNette				Tiny-ImageNet			
techniques	ConvNet↑	ResNet-18↑	PSNR↓	SSIM↓	ConvNet↑	ResNet-18↑	PSNR↓	SSIM↓
-	51.87	51.82	-	-	22.62	28.29	-	-
$\text{Ours}(\lambda = 0.1)$	51.26	50.55	23.48	73.20	22.03	28.22	20.54	54.89
$Ours(\lambda = 0.5)$	51.36	48.97	19.97	64.23	21.77	28.09	18.06	44.18
$Ours(\lambda = 0.8)$	50.68	47.52	16.42	50.80	20.85	26.83	16.95	35.89
Laplace(s = 0.2, p = 0.1)	48.61	45.25	24.02	81.66	21.50	27.48	22.25	73.09
Gaussian(s = 0.2, p = 0.1)	48.31	46.70	24.82	85.89	21.48	27.51	23.38	78.90
Laplace(s = 0.2, p = 0.2)	45.61	38.01	20.05	73.13	19.32	23.66	19.99	64.51
Gaussian(s = 0.2, p = 0.2)	45.81	38.09	20.30	76.11	19.32	23.52	20.35	68.56
FedMix	41.86	37.76	16.88	58.93	13.86	16.26	16.43	56.91

Model Inversion Attack

Table S3: Membership Inference Attack.

Method	TPR@FPR=0.1%
Sharing model-based methods (DENSE, Co-Boosting)	22.81
FedSD2C	20.13

Membership Inference Attack

• FedSD2C achieve comparable privacy protection with minimal performance degradation

Experiments: Effectiveness of VAE

Figure 3: (a) Experiments on the medical image data domain.Adopting pre-trained Autoencoders on other data domains canreduce performance. However, this can be mitigated by increasingTsyn. (b) Experiments of FedSD2C with randomly initializeddownsampling and upsampling modules (blue line) compared topre-trained Autoencoders (orange line) on ImageNette. Withoutpre-trained knowledge, FedSD2C requires a higher Tsyn for distil-late synthesis but can still achieve comparable results. ResNet-18is used for both experiments.

Thank you!