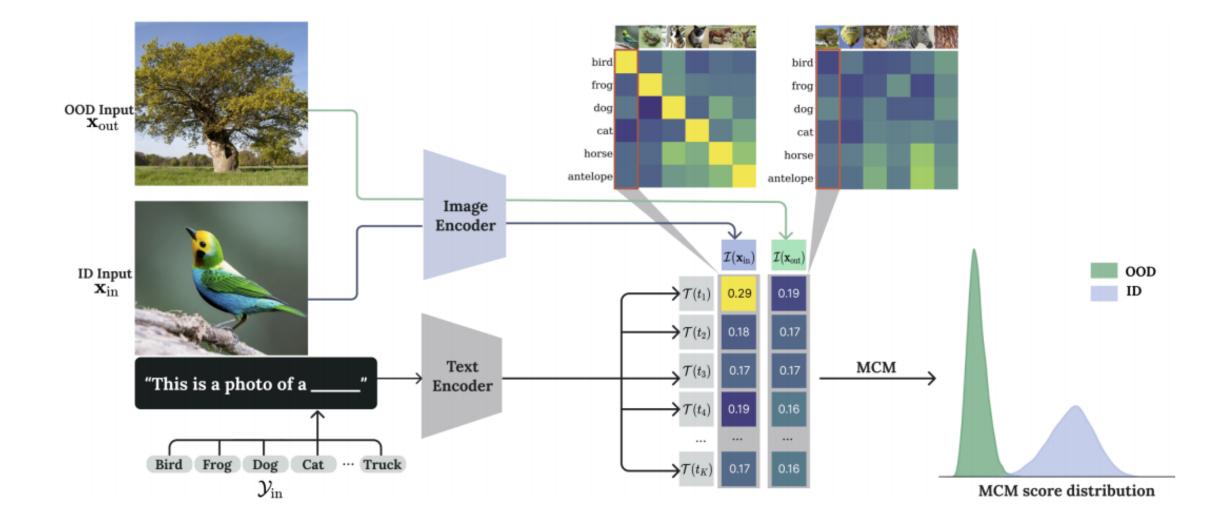


¹Southern University of Science and Technology ²Shanghai University of Finance Economics *Equal Contribution *Corresponding Authors

Yixia Li^{1*} Boya Xiong^{2*} Guanhua Chen^{1†} Yun Chen^{2†}

NEURAL INFORMATION PROCESSING SYSTEMS PROBLEM OF OOD

- ID (In-Distribution)
 - Data specified by the user.
- OOD (Out-of-Distribution)
 - Data different from ID data set.
- Target
 - Maintain high accuracy on ID samples and effectively identify OOD samples.



 $G(\mathbf{x}) = \begin{cases} 1 & S(\mathbf{x}) \ge \lambda \\ 0 & S(\mathbf{x}) < \lambda \end{cases}$

• CLIP-Based OOD Method [1][2]

- Utilizes global and local features within CLIP to measure image-concept alignment, enhancing the separation between ID and OOD samples.
- Existing post-hoc methods yield from suboptimal performance.

• CNN-Based OOD Post-Hoc Method [3][4]

- Assumes that ID and OOD samples produce distinct activation patterns in models trained on ID data. Rectifying activations can reduce OOD influence and improve ID-OOD separability.
- The CLIP model is not fine-tuned on downstream ID-domain datasets.

• Activation differences between ID and OOD data become more subtle.

- [1] https://openreview.net/forum?id=KnCS9390Va
- [2] https://arxiv.org/abs/2304.04521
- [3] https://openreview.net/forum?id=ndYXTEL6cZz
- [4] https://arxiv.org/abs/2111.12797

- Low-Rank Approximations Improve Stability [5]
 - stability and lead to incorrect model responses.
 - LLMs' question-answering performance.
- Our Method
 - discarding noisy elements.

• Minor singular components often **contain noisy information** that can compromise

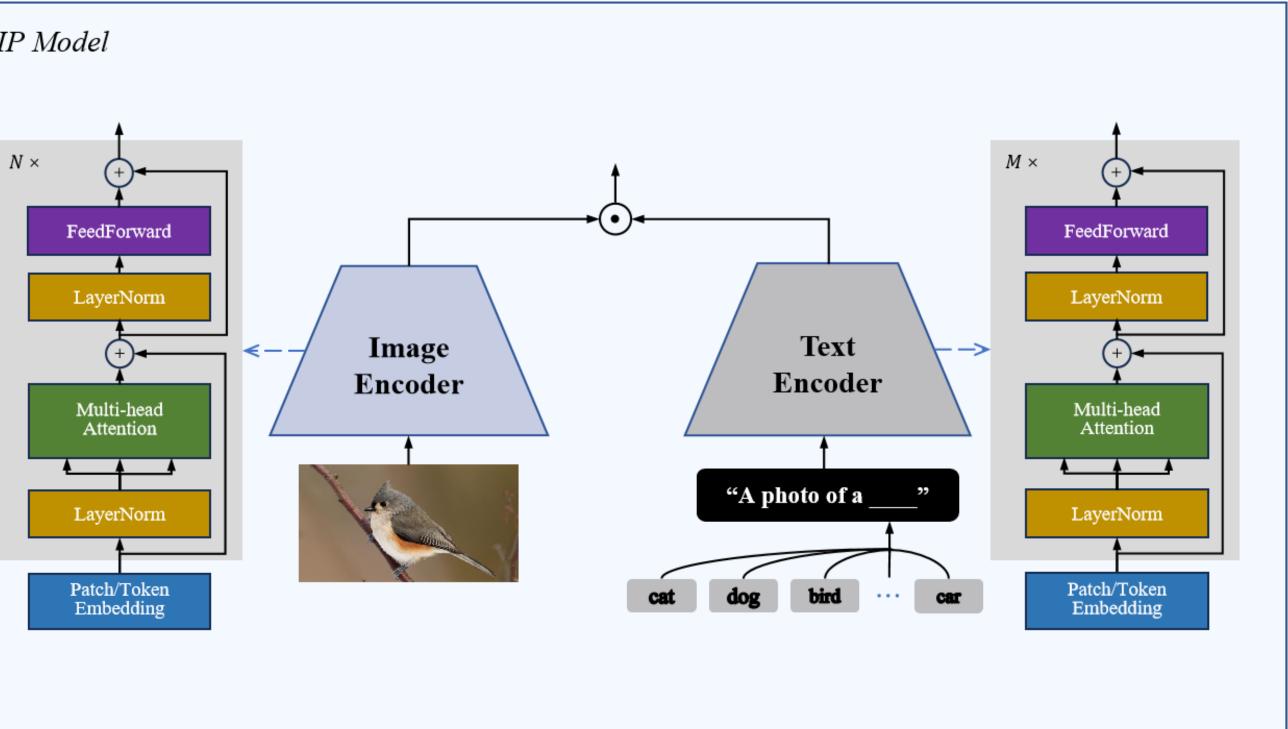
• Using low-rank approximations in certain layers of transformer blocks can enhance

• Selectively reduce the rank of model weights, prioritizing crucial information while

Method - Training Free

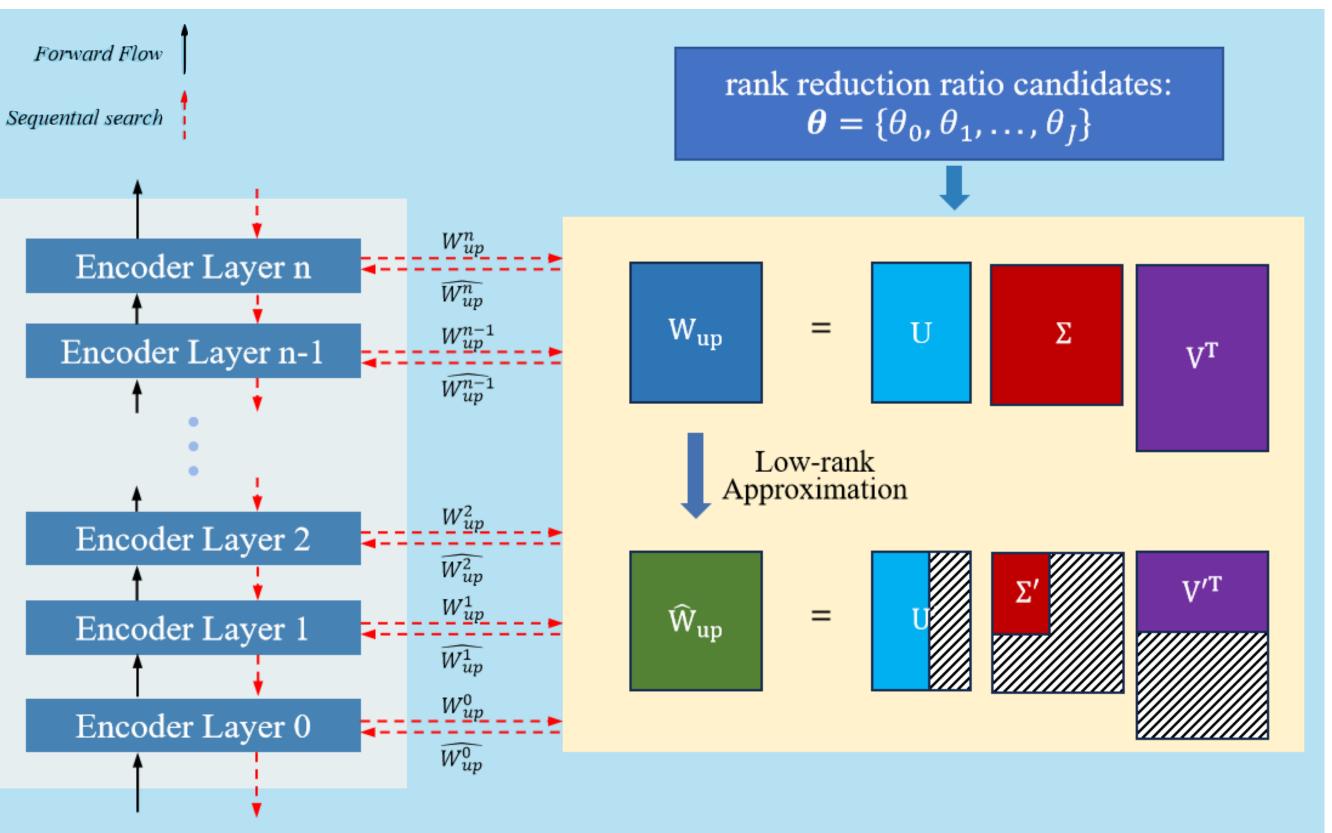
- SeTAR Training Free
 - Given a CLIP model.
 - Define a list of rank reduction ratio candidates: $\boldsymbol{\theta} = \{\theta_0, \theta_1, \dots, \theta_J\}.$
 - Optimize the rank reduction with top-to-bottom, image-to-text greedy search algorithm.

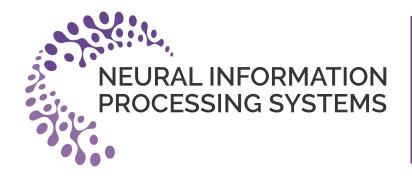
CLIP Model



Method - Training Free

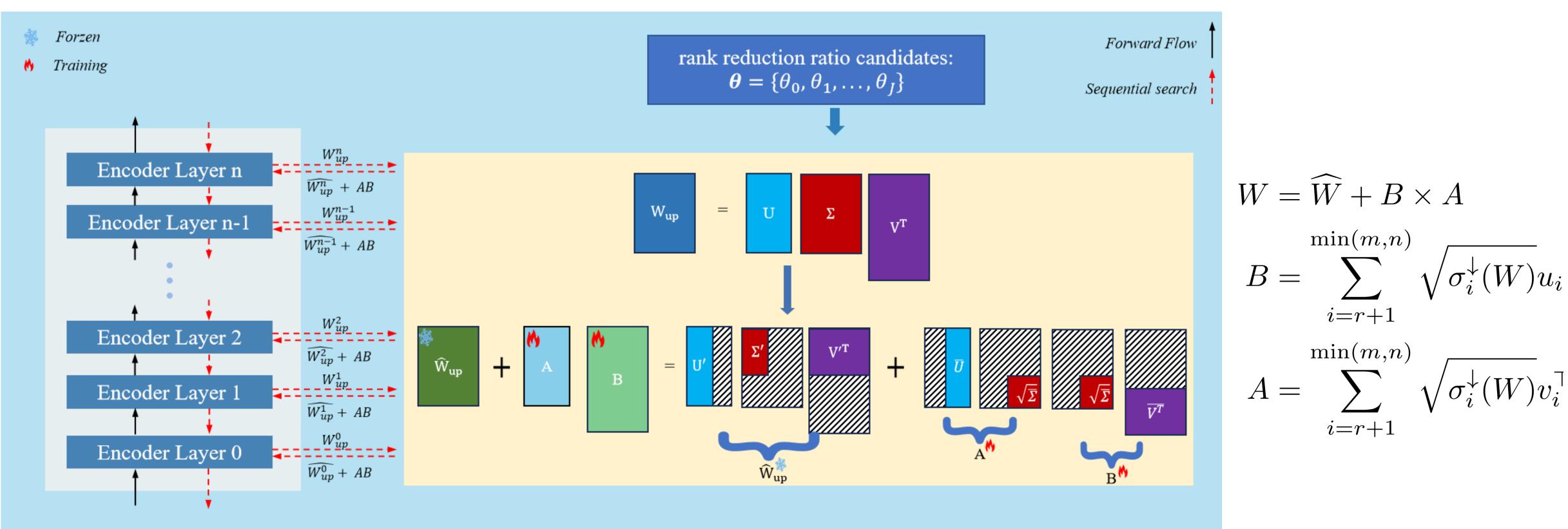
- How to Process
 - Searching for the optimal W_{up}^n ratio using metrics.
 - Replacing W_{up}^n with its low-rank approximation (W_{up}^{n}) .
 - Sequentially process all N image encoder layers from top to bottom.
 - Same process for text encoder.

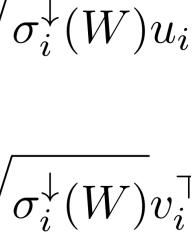




Method - Fine Tuning

• SeTAR - Fine Tuning





Expriments

• SeTAR - Training Free

Table 1: Training free results compared to zero-sl highest performance.

Method	iNaturalist		SUN		Places		Texture		ImageNet22K		COCO		Average	
	FPR↓	AUC↑	FPR↓	AUC↑	FPR↓	AUC↑	FPR↓	AUC↑	FPR↓	AUC↑	FPR↓	AUC↑	FPR↓	AUC↑
ImageNet1K														
MCM Score														
Vanilla MCM [†]	30.91	94.61	37.59	92.57	44.69	89.77	57.77	86.11	-	-	-	-	42.74	90.77
Vanilla MCM*	32.07	94.43	38.65	92.37	43.73	90.03	57.89	86.13	-	-	-	-	43.09	90.74
SeTAR	26.92	94.67	35.57	92.79	42.64	90.16	55.83	86.58	-	-	-	-	40.24	91.05
GL-MCM Score														
Vanilla GL-MCM [†]	15.18	96.71	30.42	93.09	38.85	89.90	57.93	83.63	-	-	-	-	35.47	90.83
Vanilla GL-MCM*	15.34	96.62	30.65	93.01	37.76	90.07	57.41	83.73	-	-	-	-	35.29	90.86
SeTAR	13.36	96.92	28.17	93.36	36.80	90.40	54.17	84.59	-	-	-	-	33.12	91.32
Pascal-VOC														
MCM Score														
Vanilla MCM [†]	8.20	98.23	28.60	94.68	\diamond	\diamond	51.70	91.45	51.40	90.94	54.50	89.02	38.88	92.86
Vanilla MCM*	7.24	98.23	27.91	94.56	32.40	92.45	51.61	91.89	50.60	91.42	53.70	89.30	37.24	92.98
SeTAR	4.59	98.71	24.91	95.15	28.46	93.21	40.44	93.58	48.25	92.08	48.10	89.70	32.46	93.74
GL-MCM Score														
Vanilla GL-MCM [†]	4.20	98.71	23.10	94.66	\diamond	\diamond	43.00	92.84	41.00	92.38	44.30	90.48	31.12	93.81
Vanilla GL-MCM*	4.33	98.81	22.94	94.63	26.20	93.11	41.61	92.88	37.88	93.17	43.70	90.71	29.44	93.88
SeTAR	3.66	98.96	21.93	94.81	25.04	93.62	20.35	96.36	31.47	94.31	40.70	91.19	23.86	94.87

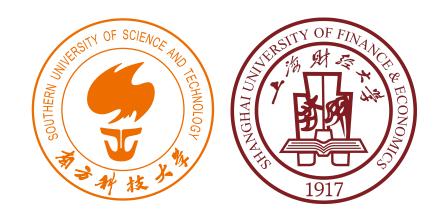


Table 1: Training free results compared to zero-shot baselines on CLIP-base. Bold value represent the

Expriments

• SeTAR - Fine Tuning

Table 2: Fine-tuning results on ImageNet1K benchmark. **Bold** values indicate the highest performance. \pm indicates the standard deviation from 3 runs.

CLIP-

NPOS^{*} CoOp[†] LoCoC LoCoC LoRA^{*} SeTAR

CLIP-

LoCoC LoRA^{*} SeTAR

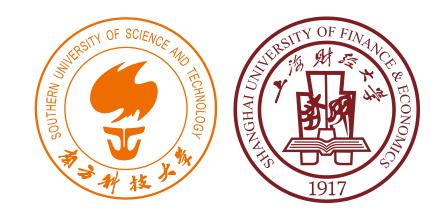
Swin-

LoRA^{*} SeTAR

-base	MCM FPR95↓	Score AUROC↑	GL-MC FPR95↓	M Score AUROC↑		
S^{\dagger}	42.20	90.43	36.86	90.37		
[†]	44.81	90.03	36.58	90.25		
Op [†]	40.17	91.53	33.52	92.14		
Op*	$39.76_{\pm 4.06}$	$91.22_{\pm 0.52}$	$34.14_{\pm 1.64}$	$91.73_{\pm 0.17}$		
*	$41.67_{\pm 0.14}$	$90.85_{\pm 0.01}$	$34.36_{\pm 0.11}$	$90.88_{\pm 0.01}$		
R+FT	$38.77_{\pm 0.22}$	91.55 $_{\pm 0.01}$	$32.19_{\pm 0.20}$	92.31 $_{\pm 0.05}$		
-large	MCM	Score	GL-MCM Score			
	FPR95↓	AUROC↑	FPR95↓	AUROC↑		
Op*	$40.74_{\pm 3.80}$	$91.13_{\pm 0.79}$	$46.74_{\pm 4.19}$	$89.32_{\pm 0.80}$		
\mathbf{A}^*	$38.62_{\pm 0.07}$	$91.66_{\pm 0.02}$	$43.39_{\pm 0.01}$	$89.76_{\pm 0.03}$		
R+FT	$34.75_{\pm 0.55}$	92.86 $_{\pm 0.15}$	$37.05_{\pm 0.59}$	91.83 ±0.12		
-base	MSP	Score	Energy Score			
	FPR95↓	AUROC↑	FPR95↓	AUROC↑		
*	$57.02_{\pm 0.03}$	$80.49_{\pm 0.01}$	$62.17_{\pm 0.02}$	$72.80_{\pm 0.00}$		
R+FT	$47.12_{\pm 0.42}$	$87.80_{\pm 0.44}$	$39.29_{\pm 0.57}$	$88.01_{\pm 0.51}$		

Ablation Experiment

- Different Backbones
 - Compatible with diverse model backbon
- Various Score Functions
 - Consistently outperforms baselines acros backbones with various scoring function
- Classification Performance
 - Maintains or improves classification accur

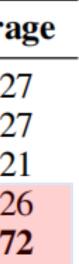


	Backbone	Score	Vanilla	Method	SeTAR	
nes.	Ducheone	50010	FPR↓	AUC↑	FPR↓	AUC↑
	ImageNet1K	K				
	CLIP-base	NegLabel	25.40	94.21	23.09	94.48
	CLIP-large	MCM	37.19	91.73	36.26	91.92
	CLIP-large	GL-MCM	40.65	89.98	39.54	90.22
oss all	Swin-base	MSP	59.25	84.12	56.05	85.77
755 all	Swin-base	Energy	65.01	76.10	51.61	84.42
	Pascal-VOC	1				
1S.	CLIP-large	MCM	52.21	91.68	42.57	92.91
	CLIP-large	GL-MCM	43.96	92.45	31.12	94.00

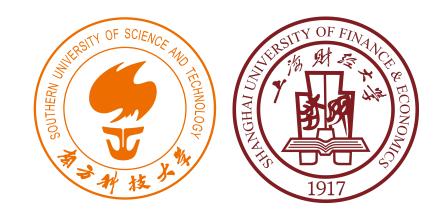
Table 3: Results for different ViT backbones

Table 4: Image classification results

racy.	Method	IN1K	SUN	Places	Texture	Avera
	Vanilla CLIP*	64.07	75.77	45.65	43.60	57.27
	LoCoOp*	64.93	75.89	46.47	37.79	56.27
	LoRA*	65.43	76.86	46.58	43.98	58.21
	SeTAR	63.97	75.50	45.81	43.76	57.20
	SeTAR+FT	67.02	77.94	46.64	43.28	58.72



- low-rank approximation.
- SeTAR scales across unimodal and multimodal models, enhancing various scoring functions.
- We extend SeTAR to SeTAR+FT, a finetuning approach that adapts models to indistribution data, achieving state-of-the-art OOD detection.



• SeTAR is a simple, effective and training-free OOD detection method using post-hoc

Thanks for listening

Code

Paper

Project

Homepage