

Rethinking the Membrane Dynamics and Optimization Objectives of Spiking Neural Networks

Hangchi Shen Qian Zheng Huamin Wang* Gang Pan

COLLEGE OF ARTIFICIAL INTELLIGENCE, SOUTHWEST UNIVERSITY

脑机智能全国重点实验室 The State Key Lab of Brain-Machine Intelligence

Background & Motivations

>Neural Dynamics in Spiking Neural Networks

- Challenges
 - How to optimize the dynamics of SNNs?
 - How to handle the output of SNNs?
 - How to Design Optimization Objectives?

- Solutions
 - ✓ Learnable Initial Membrane Potential (IMP).

T4

- ✓ Last Time Step (LTS) Method for Static Task.
- ✓ Smoothed Temporal Efficient Training (TET-S).

Analysis & Solutions

Membrane Dynamics Related to Initial Membrane Potential IMP=0.0IMP=0.5 **IMP=1.0** $(-\infty, 0.125)$ 0000 $(-\infty, 0.25)$ 0000 [0.125, 0.166)0001 $(-\infty, 0.333)$ 10000001 [0.25, 0.33)0010 [0.166, 0.250)[0.333, 0.500)1001 0010 [0.33, 0.50)[0.250, 0.500)0100 [0.500, 0.100)1010 0101 [0.50, 0.75)[0.500, 1.000) $[1.000, +\infty)$ 1010 1111 $[1.00, +\infty)$ 1111 $[1.000, +\infty)$ 1111 Input Intensity **Firing Pattern** Input Intensity **Firing Pattern Firing Pattern Input Intensity**

Adjusting synaptic weights https://www.adjusting.tep Adjusting Initial Membrane Potential

embrane potentia

Learnable Initial Membrane Potential

Constant IMP

 $h[t] = (1 - \tau)s[t] + I[t], \quad h \in \mathbb{R}^{T \times N}, \quad I \in \mathbb{R}^{T \times N}$ $o[t] = h[t] > V_{th}, \quad o \in \{0, 1\}^{T \times N}, \quad V_{th} \in \mathbb{R}$ $s[t+1] = h[t] - o[t], \quad s \in \mathbb{R}^{T \times N}, \quad s[0] \in \{0\}^{N}$

Learnable IMP

 $h[t] = (1 - \tau)s[t] + I[t], \quad h \in \mathbb{R}^{T \times N}, \quad I \in \mathbb{R}^{T \times N}$ $o[t] = h[t] > V_{th}, \quad o \in \{0, 1\}^{T \times N}, \quad V_{th} \in \mathbb{R}$ $s[t+1] = h[t] - o[t], \quad s \in \mathbb{R}^{T \times N}, \quad s[0] = \mathbb{R}^{N}$

(a) IMP=0.0

(b) IMP=0.25

Performance of TET and SDT

Loss	Loss Static Dataset(SEW-R18)			Neuromorphic Dataset(VGG11)			
Function	CIFAR10/100	ImageNet100	ImageNet1k	CIFAR10DVS	DVSG128	NCaltech101	
SDT Loss TET Loss	94.56/76.58 94.33/76.40	78.42 77.80	63.21 62.92	84.3 85.6	98.26 98.61	85.78 86.32	
2.5 2.0 1.5 1.0 0.5 0.0 0 E	SDT TET 500 1000	2.5 1.5 1.0 0.5 0.0 0 500 Epoch	SDT TET 1000 2.5 2.0 1.5 0.5 0.0 0	SDT TET 500 1000 Epoch	2.5 2.0 5 1.5 1.0 0.5 0	SDT TET 500 1000 Epoch	
(a) '	Т=1	(b) T=2		(c) T=4	(0	l) T=6	

Neural Dynamics Evolution in Static Tasks

NEURAL INFORMATION PROCESSING SYSTEMS

> Given that $(s[t+1], y[t]) \leftarrow f(s[t], x[t], \theta)$, assuming x = x[t] for t = 1, 2, ..., T, the equation can be simplified to $y[t] = f(s[t], x, \theta)$,

where s[t] is the only time-varying term. - So, the accuracy of y[t] depends only on s[t].

➤ Vanilla TET Method

 $\mathcal{L}_{\text{TET}} = \frac{1}{T} \times \sum_{t}^{T} \mathcal{L}_{\text{CE}}(y[t], y_{gt}), \text{ where } y[t] = f(s[t], x, \theta)$ TET will supervise the output at each time step, which may lead to **slower convergence** compared to SDT. $\mathcal{L}_{\text{Total}} = (1 - \lambda)\mathcal{L}_{\text{TET}} + \lambda\mathcal{L}_{\text{REG}}, \mathcal{L}_{\text{REG}} = \frac{1}{T}\sum_{t=1}^{T} \mathcal{L}_{\text{MSE}}(y[t], \phi)$ $\mathcal{L}_{\text{REG}} \text{ and } \mathcal{L}_{\text{TET}} \text{ cannot converge to 0 simultaneously, which}$

may weaken the model's final performance.

Since the accuracy of the last time step in static tasks is already close to the average accuracy, we propose using the last time step (LTS) for the SNN's output representation $\mathcal{L}_{\text{LTS}} = \mathcal{L}_{\text{CE}}(y[T], y_{gt}), where y[T] = f(s[T], x, \theta).$ and a smoothed version of TET for neuromorphic tasks. $\mathcal{L}_{\text{TET-S}} = \frac{1}{T} \times \sum_{t}^{T} \mathcal{L}_{\text{CE}}(y[t], \hat{y}_{gt}), where \hat{y}_{gt} = (1 - \epsilon)y_{gt} + \frac{\epsilon}{K}$

Convergence Speed

Ablation Studies

Dataset	Method	Spiking Network	Time-steps	Accuracy(%)
	$SDT(\epsilon = 0.0)$	VGG	10	83.70
	$\text{TET}(\epsilon = 0.0)$	VGG	10	84.90
	$\text{TET-S}(\epsilon = 0.1)$	VGG	10	85.60
	$\text{TET-S}(\epsilon = 0.01)$	VGG	10	86.10
CIEAR10 DVS	$\text{TET-S}(\epsilon = 0.001)$	VGG	10	85.40
CIFARIO-DV5	IMP+SDT($\lambda = 0.0$)	VGG	10	83.70
	IMP+TET($\lambda = 0.0$)	VGG	10	85.90
	IMP+TET-S($\lambda = 0.0$)	VGG	10	86.20
	IMP+TET-S($\lambda = 0.2$)	VGG	10	87.10
	IMP+TET-S($\lambda = 0.4$)	VGG	10	86.40
	TET	SEW-ResNet18	4	78.50
	SDT	SEW-ResNet18	4	79.10
ImageNet100	LTS	SEW-ResNet18	4	80.20
	IMP+TET	SEW-ResNet18	4	78.70
	IMP+SDT	SEW-ResNet18	4	79.90
	IMP+LTS	SEW-ResNet18	4	80.80

Neuromorphic Task

Dataset	Method	SNN Architecture	Size	Time Steps	Accuracy(%)
5.	GLIF[2]	Wide 7B Net	48	16	78.10
	NDA[3]	VGG	48	10	79.60
	TET[1]	VGG	48	10	83.17
	TEBN[4]	VGG	48	10	84.90
	PSN[5]	VGG	48	10	85.90
	IMP(ours)	VGG	48	10	85.90
	IMP+TET-S(ours)	VGG	48	10	87.10
	IMP+TET-S(ours)	VGG	48	8	87.80
CIFAR10-DVS	PLIF[6]	PLIF Net	128	20	74.80
	TDBN[7]	ResNet-19	128	10	67.80
	Dspike[8]	ResNet-18	128	10	75.40
	KLIF[9]	PLIF Net	128	15	70.90
	SEW ResNet[10]	Wide 7B Net	128	16	74.40
	Spikformer[11]	Spikformer	128	10	78.90
	Spikformer[11]	Spikformer	128	16	80.90
	NDA[3]	VGG	128	10	81.70
	IMP(ours)	VGG	128	16	86.30
	IMP+TET-S(ours)	VGG	128	16	87.00
	NDA[3]	VGG	48	10	78.20
	EventMix[12]	ResNet18	48	10	79.47
	ESP[13]	SNN7-LIFB	48	10	81.74
	TCJA[14]	TCJA-SNN	48	10	82.50
N-Caltech101	TKS [15]	VGG-TKS	48	10	84.10
	IMP(ours)	VGG	48	10	84.68
	IMP+TET-S(ours)	VGG	48	10	85.01
	EventDrop[16]	VGG	128	10	74.04
	NDA[3]	VGG	128	16	83.70
	EventRPG[17]	VGG	128	10	85.62
	STR[18]	VGG	128	10	85.91
	IMP(ours)	VGG	128	16	86.12
	IMP+TET-S(ours)	VGG	128	16	87.86

Experiments & Conclusion

Static Task (ImageNet-1k)

NEURAL INFORMATION PROCESSING SYSTEMS

Method	Network Architecture	Reset	Params	Time Steps	Accuracy(%)
DSN[5]	SEW ResNet-18	X	11.69	4	67.63
1010[0]	SEW ResNet-34	×	21.79	4	70.54
Dsnike[8]	ResNet-34	~	21.79	6	68.19
Dspike[0]	VGG-16	~	138.42	5	71.24
TET[1]	SEW ResNet-34	~	21.79	4	68.00
TDBN[7]	ResNet-34	~	21.79	6	67.05
TEBN[4]	SEW ResNet-34	~	21.79	4	68.28
GLIF[2]	ResNet-34	~	21.79	4	67.52
Spiltformar[11]	Spikformer-6-512	~	23.37	4	72.64
Spikionner[11]	Spikformer-8-512	~	29.68	4	73.38
	SEW ResNet-18	~	11.69	4	63.18
	SEW ResNet-34	~	21.79	4	67.04
SEW ResNet[10]	SEW ResNet-50	~	25.56	4	67.78
	SEW ResNet-101	~	44.55	4	68.76
	SEW ResNet-152	~	60.19	4	69.26
	SEW ResNet-18	~	11.69	4	64.33(+1.15)
LTS	SEW ResNet-34	~	21.79	4	68.10(+1.06)
	SEW ResNet-50	~	25.56	4	71.24(+3.46)
	SEW ResNet-18	~	14.17	4	65.38 (+2.20)
IMP+LTS	SEW ResNet-34	~	25.54	4	68.90 (+1.86)
	SEW ResNet-50	~	36.67	4	71.83(+4.05)

Execution Speed

Contributions

- ✓ First implementation of learnable IMP with almost no extra computational consumption.
- Propose two learning method, LTS and TET, for static and neuromorphic task, respectively.
- ✓ Achieve SOTA on neuromorphic tasks and significantly improved on static tasks.

Thank You for Listening

References

Deng, S., Li, Y., Zhang, S., & Gu, S. (2022). Temporal efficient training of spiking neural network via gradient re-weighting. arXiv preprint arXiv:2202.11946.
Wu, Y., Deng, L., Li, G., Zhu, J., & Shi, L. (2018). Spatio-temporal backpropagation for training high-performance spiking neural networks. Frontiers in neuroscience, 12, 331.

Contact

Hangchi Shen: <u>stephen1998@email.swu.edu.cn</u> Qian zheng: <u>qianzheng@zju.edu.cn</u> Huamin Wang: <u>hmwang@swu.edu.cn</u> Gang Pan: <u>gpan@zju.edu.cn</u>