LEARNING DISCRETE LATENT VARIABLE STRUCTURES WITH TENSOR RANK CONDITIONS

NeurIPS 2024

Zhengming Chen1,2 , Ruichu Cai1,* , Feng Xie3 , Jie Qiao1 ,

Anpeng Wu^{4,2}, Zijian Li², Zhifeng Hao^{1,5}, Kun Zhang^{2,6,*}

¹School of Computer Science, Guangdong University of Technology, Guangzhou, China

²Machine Learning Department, Mohamed bin Zayed University of Artificial Intelligence ³Department of Applied Statistics, Beijing Technology and Business University, Beijing, China

> ⁴Department of Computer Science and Technology, Zhejiang University ⁵College of Science, Shantou University, Shantou, Guangdong, China

> > ⁶Department of Philosophy, Carnegie Mellon University

- Problem Definition
- Tensor Rank Condition
- Algorithm for Learning Discrete Latent Structure
- Experimental Results and Conclusion

Problem Definition

Is it possible to find latent variable L_i and their causal relations only from discrete measured variables X_i ?

Discrete Latent Structure Model with Three-Pure Children (3PLSM)

- **Purity Assumption:** there is no direct edges between the observed variables
- Three-Pure Child Variable Assumption: each latent variable has at least three pure variables as children
- **Sufficient Observation Assumption:** The cardinality of observed variables support is larger than the cardinality of any latent variables support.

Discrete Latent Structure Model: - Measurement Model: red edges - Structure Model: blue edges

How to identify the causal structure among latent variables, in a <u>statistically</u> <u>efficient</u> and <u>robust</u> manner?

Identifiability Condition for Discrete 3PLSM

Causal Assumptions:

(1) Markov assumption、Faithfulness assumption.

Full Rank Assumption:

(2) For any conditional probability $\mathbb{P}(X|Pa_X)$, the corresponding contingency table is full rank

Identifiability results of discrete latent structure model, i.e., the measurement model is full identifiable, and the structure model is identified up to a Markov equivalent class

Tensor Rank Condition for Discrete Causal Models

Graphical Criteria

Theorem 3.3 (Graphical implication of tensor rank condition). In the discrete causal model, suppose Assumptions 2.2 ~ Assumption 2.4 hold. Consider an observed variable set $\mathbf{X}_p = \{X_1, \dots, X_n\}$ $(\mathbf{X}_p \subseteq \mathbf{X} \text{ and } n \ge 2)$ and the corresponding n-way probability tensor $\mathcal{T}_{(\mathbf{X}_p)}$ that is the tabular representation of the joint probability mass function $\mathbb{P}(X_1, \dots, X_n)$. Then, $\operatorname{Rank}(\mathcal{T}_{(\mathbf{X}_p)}) = r \ (r > 1)$ if and only if (i) there exist a conditional set $\mathbf{S} \subset \mathbf{V}$ with $|\operatorname{supp}(\mathbf{S})| = r$ that d-separates any pair of variables in $\{X_1, \dots, X_n\}$, and (ii) does not exist conditional set $\tilde{\mathbf{S}}$ that satisfies $|\operatorname{supp}(\tilde{\mathbf{S}})| < r$.

- Step I: Identify Causal Cluster
 - Find **causal clusters** from the observed variable set by <u>Tensor</u> <u>Rank Condition</u>

Proposition 4.3 (Identification of causal cluster). In the discrete 3PLSM mode, suppose Assumption 2.2 ~ Assumption 2.4 hold. Let $r = |\operatorname{supp}(L_i)|$ denote the cardinality of the latent support. Given three disjoint observed variables $X_i, X_j, X_k \in \mathbf{X}$,

- Rule1: if the rank of tensor $\mathcal{T}_{(X_i,X_j,X_k)}$ is not equal to r, i.e., $\operatorname{Rank}(\mathcal{T}_{(X_i,X_j,X_k)}) \neq r$, then X_i , X_j and X_k belong to the different latent parents.
- Rule2: for any $X_s, X_s \in \mathbf{X} \setminus \{X_i, X_j, X_k\}$, if the rank of tensor $\mathcal{T}_{(X_i, X_j, X_k, X_s)}$ is r, i.e., Rank $(\mathcal{T}_{(X_i, X_i, X_k, X_s)}) = r$, then $\{X_i, X_j, X_k\}$ share the same latent parent.
- Step II: Identify Causal Structure among Latent Variables
 - Identify the **d-separation relations** among latent variables by <u>Tensor Rank Condition</u>

Theorem 4.7 (d-separation among latent variable). In the discrete 3PLSM, suppose Assumption 2.2 ~ Assumption 2.4 hold. Let r denote the cardinality of the latent support. Then, $L_i \perp L_j | \mathbf{L}_p$ if and only if $\operatorname{Rank}(\mathcal{T}_{(X_i, X_j, \mathbf{X}_{p1}, \mathbf{X}_{p2})}) = r^{|\mathbf{L}_p|}$, where X_i and X_j are the pure children of L_i and L_j , \mathbf{X}_{p1} and \mathbf{X}_{p2} are two disjoint child sets of \mathbf{L}_p that satisfy $\forall L_i \in \mathbf{L}_p$, $\operatorname{Ch}_{L_i} \cap \mathbf{X}_{p1} \neq \emptyset$, $\operatorname{Ch}_{L_i} \cap \mathbf{X}_{p2} \neq \emptyset$.

• Step I: Identify Causal Cluster

Find causal clusters from the observed variable set by Tensor Rank Condition

Proposition 4.3 (Identification of causal cluster). In the discrete 3PLSM mode, suppose Assumption 2.2 ~ Assumption 2.4 hold. Let $r = |\operatorname{supp}(L_i)|$ denote the cardinality of the latent support. Given three disjoint observed variables $X_i, X_j, X_k \in \mathbf{X}$,

- Rule1: if the rank of tensor $\mathcal{T}_{(X_i, X_j, X_k)}$ is not equal to r, i.e., Rank $(\mathcal{T}_{(X_i, X_j, X_k)}) \neq r$, then X_i , X_j and X_k belong to the different latent parents.
- Rule2: for any X_s , $X_s \in \mathbf{X} \setminus \{X_i, X_j, X_k\}$, if the rank of tensor $\mathcal{T}_{(X_i, X_j, X_k, X_s)}$ is r, i.e., Rank $(\mathcal{T}_{(X_i, X_j, X_k, X_s)}) = r$, then $\{X_i, X_j, X_k\}$ share the same latent parent.

• Step II: Identify Causal Structure among Latent Variables

• Identify the d-separation relations among latent variables by Tensor Rank Condition

Theorem 4.7 (d-separation among latent variable). In the discrete 3PLSM, suppose Assumption 2.2 ~ Assumption 2.4 hold. Let r denote the cardinality of the latent support. Then, $L_i \perp L_j \mid \mathbf{L}_p$ if and only if $\operatorname{Rank}(\mathcal{T}_{(X_i,X_j,\mathbf{X}_{p1},\mathbf{X}_{p2})}) = r^{\mid \mathbf{L}_p \mid}$, where X_i and X_j are the pure children of L_i and L_j , \mathbf{X}_{p1} and \mathbf{X}_{p2} are two disjoint child sets of \mathbf{L}_p that satisfy $\forall L_i \in \mathbf{L}_p$, $\operatorname{Ch}_{L_i} \cap \mathbf{X}_{p1} \neq \emptyset$, $\operatorname{Ch}_{L_i} \cap \mathbf{X}_{p2} \neq \emptyset$.

For example,
$$\operatorname{Rank}(\mathbb{P}(X_7, X_8, X_9, X_2)) = |\operatorname{supp}(L_3)|$$
,
since L_3 d-separates all variables in $\{X_7, X_8, X_9, X_2\}$

• Step I: Identify Causal Cluster

• Find **causal clusters** from the observed variable set by Tensor Rank Condition

Proposition 4.3 (Identification of causal cluster). In the discrete 3PLSM mode, suppose Assumption 2.2 ~ Assumption 2.4 hold. Let $r = |\operatorname{supp}(L_i)|$ denote the cardinality of the latent support. Given three disjoint observed variables $X_i, X_j, X_k \in \mathbf{X}$,

- Rule1: if the rank of tensor $\mathcal{T}_{(X_i, X_j, X_k)}$ is not equal to r, i.e., $\operatorname{Rank}(\mathcal{T}_{(X_i, X_j, X_k)}) \neq r$, then X_i , X_j and X_k belong to the different latent parents.
- Rule2: for any X_s , $X_s \in \mathbf{X} \setminus \{X_i, X_j, X_k\}$, if the rank of tensor $\mathcal{T}_{(X_i, X_j, X_k, X_s)}$ is r, i.e., Rank $(\mathcal{T}_{(X_i, X_j, X_k, X_s)}) = r$, then $\{X_i, X_j, X_k\}$ share the same latent parent.

• Step II: Identify Causal Structure among Latent Variables

Identify the d-separation relations among latent variables by Tensor Rank Condition

Theorem 4.7 (d-separation among latent variable). In the discrete 3PLSM, suppose Assumption 2.2 ~ Assumption 2.4 hold. Let r denote the cardinality of the latent support. Then, $L_i \perp L_j \mid \mathbf{L}_p$ if and only if $\operatorname{Rank}(\mathcal{T}_{(X_i, X_j, \mathbf{X}_{p1}, \mathbf{X}_{p2})}) = r^{\mid \mathbf{L}_p \mid}$, where X_i and X_j are the pure children of L_i and L_j , \mathbf{X}_{p1} and \mathbf{X}_{p2} are two disjoint child sets of \mathbf{L}_p that satisfy $\forall L_i \in \mathbf{L}_p$, $\operatorname{Ch}_{L_i} \cap \mathbf{X}_{p2} \neq \emptyset$.

For example, Rank
$$(\mathbb{P}(X_4, X_7, X_1, X_2)) = |\operatorname{supp}(L_1)|$$
,
since L_1 d-separates L_2 from L_3

• Step I: Identify Causal Cluster

• Find **causal clusters** from the observed variable set by Tensor Rank Condition

Proposition 4.3 (Identification of causal cluster). In the discrete 3PLSM mode, suppose Assumption 2.2 ~ Assumption 2.4 hold. Let $r = |\operatorname{supp}(L_i)|$ denote the cardinality of the latent support. Given three disjoint observed variables $X_i, X_j, X_k \in \mathbf{X}$,

- Rule1: if the rank of tensor $\mathcal{T}_{(X_i, X_j, X_k)}$ is not equal to r, i.e., $\operatorname{Rank}(\mathcal{T}_{(X_i, X_j, X_k)}) \neq r$, then X_i , X_j and X_k belong to the different latent parents.
- Rule2: for any X_s , $X_s \in \mathbf{X} \setminus \{X_i, X_j, X_k\}$, if the rank of tensor $\mathcal{T}_{(X_i, X_j, X_k, X_s)}$ is r, i.e., Rank $(\mathcal{T}_{(X_i, X_i, X_k, X_s)}) = r$, then $\{X_i, X_j, X_k\}$ share the same latent parent.

• Step II: Identify Causal Structure among Latent Variables

 Identify the d-separation relations among latent variables by <u>Tensor Rank Condition</u>

Theorem 4.7 (d-separation among latent variable). In the discrete 3PLSM, suppose Assumption 2.2 ~ Assumption 2.4 hold. Let r denote the cardinality of the latent support. Then, $L_i \perp L_j \mid \mathbf{L}_p$ if and only if $\operatorname{Rank}(\mathcal{T}_{(X_i,X_j,\mathbf{X}_{p1},\mathbf{X}_{p2})}) = r^{\mid \mathbf{L}_p \mid}$, where X_i and X_j are the pure children of L_i and L_j , \mathbf{X}_{p1} and \mathbf{X}_{p2} are two disjoint child sets of \mathbf{L}_p that satisfy $\forall L_i \in \mathbf{L}_p$, $\operatorname{Ch}_{L_i} \cap \mathbf{X}_{p1} \neq \emptyset$, $\operatorname{Ch}_{L_i} \cap \mathbf{X}_{p2} \neq \emptyset$.

The latent structure is identified up to a Markov equivalent class!

Identifiability Results

Algorithm 1 Finding the causal cluster

Input: Data from a set of measured variables X_G , and the dimension of latent support rOutput: Causal cluster C

- 1: Initialize the causal cluster set $C := \emptyset$, and $G' = \emptyset$;
- 2: // Identify Causal Skeleton
- 3: Begin the recursive procedure
- 4: repeat
- 5: for each X_i, X_j and $X_k \in \mathbf{X}$ do
- 6: if Rank $(\mathcal{T}_{\{X_i, X_i, X_k\}}) \neq r$ then
- 7: Continue; // Rule1 of Prop. 4.3
- 8: end if
- 9: **if** Rank $(\mathcal{T}_{\{X_i, X_j, X_k, X_s\}}) = r$, for all $X_s \in \mathbf{X} \setminus \{X_i, X_j, X_k\}$ then
- 10: $\mathbf{C} = \mathbf{C} \cup \{\{X_i, X_j, X_k\}\};\$
- 11: end if
- 12: end for
- 13: until no causal cluster is found.
- 14: // Merging cluster and introducing latent variables
- 15: Merge all the overlapping sets in C by Prop. 4.5.
- 16: for each $C_i \in \mathbf{C}$ do
- 17: Introduce a latent variable L_i for C_i ;

```
18: \mathcal{G} = \mathcal{G} \cup \{L_i \to X_j | X_j \in C_i\}.
```

```
19: end for
```

```
20: return Graph G and causal cluster C.
```

Theorem (*Identification of Measurement Model*). In the discrete
3PLSM model, suppose Assumption 2.2 ~ Assumption 2.4 hold. The measurement model is fully identifiable by Algorithm 1.

Algorithm 2 PC-TENSOR-RANK

Input: Data set $\mathbf{X} = \{X_1, \dots, X_m\}$ and causal cluster C**Output**: A partial DAG G.

- 1: Initialize the maximal conditions set dimension k;
- 2: Let L_i denote as $C_i, C_i \in \mathcal{C}$;
- 3: Form the complete undirected graph \mathcal{G} on the latent variable set L;
- 4: for $\forall L_i, L_j \in \mathbf{L}$ and adjacent in \mathcal{G} do
- 5: //Test the CI relations among latent variables by Theorem 4.7
- 6: if $\exists \mathbf{L}_p \subseteq \mathbf{L} \setminus \{L_i, L_j\}$ and $(|\mathbf{L}_p| < k)$ such that $L_i \perp L_j | \mathbf{L}_p$ hold then
- 7: delete edge $L_i L_j$ from G;
- 8: end if
- 9: end for
- 10: Search V structures and apply meek rules Meek (1995).
- 11: return a partial DAG \mathcal{G} of latent variables.
- **Theorem** (*Identification of Structure Model*). In the discrete 3PLSM, suppose Assumption 2.2 ~ Assumption 2.4 hold. Given the measurement model, the causal structure over the latent variable is identified up to a Markov equivalent class by the PC-TENSOR-RANK algorithm.

Experimental Results

Table 2: Results on learning pure measurement models, where the data is generated by the discrete 3PLSM. Lower value means higher accuracy.

		Latent omission					Latent commission				Mismeasurements				
Algorithm		Our	BayPy	LTM	BPC	Our	BayPy	LTM	BPC	Our	BayPy	LTM	BPC		
$SM_1 + MM_1$	5k	0.15(3)	0.10(2)	0.15(3)	0.96(10)	0.00(0)	0.10(2)	0.00(0)	0.00(0)	0.05(1)	0.00(0)	0.00(0)	0.00(0)		
	10k	0.05(1)	0.05(1)	0.10(2)	0.90(10)	0.00(0)	0.05(1)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	0.00(0)		
	50k	0.00(0)	0.00(0)	0.00(0)	0.90(10)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	0.00(0)		
$SM_2 + MM_1$	5k	0.23(5)	0.19(6)	0.26(6)	0.90(10)	0.00(0)	0.19(6)	0.03(1)	0.00(0)	0.05(2)	0.19(6)	0.23(6)	0.00(0)		
	10k	0.13(4)	0.13(4)	0.13(4)	0.86(10)	0.00(0)	0.03(4)	0.00(0)	0.00(0)	0.00(0)	0.13(4)	0.13(4)	0.00(0)		
	50k	0.06(2)	0.10(3)	0.10(3)	0.86(10)	0.00(0)	0.13(4)	0.00(0)	0.00(0)	0.00(0)	0.13(4)	0.10(3)	0.00(0)		
$SM_2 + MM_2$	5k	0.12(2)	0.19(6)	0.21(5)	0.90(10)	0.00(0)	0.19(6)	0.00(0)	0.00(0)	0.03(1)	0.16(6)	0.21(5)	0.00(0)		
	10k	0.03(1)	0.13(4)	0.10(3)	0.86(10)	0.00(0)	0.13(4)	0.00(0)	0.00(0)	0.00(0)	0.11(4)	0.10(3)	0.00(0)		
	50k	0.00(0)	0.07(2)	0.07(2)	0.83(10)	0.00(0)	0.07(2)	0.00(0)	0.00(0)	0.00(0)	0.07(2)	0.06(2)	0.00(0)		
$SM_3 + MM_1$	5k	0.25(6)	0.30(6)	0.55(10)	0.86(10)	0.00(0)	0.30(6)	0.00(0)	0.00(0)	0.12(5)	0.20(6)	0.55(10)	0.00(0)		
	10k	0.17(5)	0.25(5)	0.50(10)	0.83(10)	0.00(0)	0.25(5)	0.00(0)	0.00(0)	0.05(3)	0.16(5)	0.50(10)	0.00(0)		
	50k	0.08(3)	0.20(4)	0.50(10)	0.83(10)	0.00(0)	0.20(4)	0.00(0)	0.00(0)	0.03(2)	0.13(4)	0.50(10)	0.00(0)		

Setup: different measurement model (MM) and different structure model (SM)

Table 3: Results on learning the structure model. The symbol '-' indicates that the current method does not output this information. Lower value means higher accuracy.

5-2 3050		Edge omission				Edge commission				Orientation omission			
Algorithm		Our	BayPy	LTM	BPC	Our	BayPy	LTM	BPC	Our	BayPy	LTM	BPC
Collider+MM ₁	5k	0.00(0)	1.00(10)	0.26(8)	1.00(10)	0.10(1)	0.00(0)	0.00(0)	0.00(0)	0.10(1)	1.00(10)	-	1.00(0)
	10k	0.00(0)	1.00(10)	0.23(6)	1.00(10)	0.00(0)	0.02(1)	0.0(0)	0.00(0)	0.00(0)	1.00(10)	-	1.00(0)
	50k	0.00(0)	1.00(10)	0.10(3)	1.00(10)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	1.00(10)	-	1.00(0)
$SM_2 + MM_1$	5k	0.15(3)	1.00(10)	0.16(6)	1.00(10)	0.10(1)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	-	0.00(0)
	10k	0.05(1)	1.00(10)	0.13(4)	1.00(10)	0.01(1)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	-	0.00(0)
	50k	0.00(0)	1.00(10)	0.10(3)	1.00(10)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	-	0.00(0)
$Star + MM_1$	5k	0.10(3)	1.00(10)	0.25(5)	1.00(10)	0.20(5)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	-	0.00(0)
	10k	0.06(2)	1.00(10)	0.15(3)	1.00(10)	0.08(3)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	-	0.00(0)
	50k	0.03(1)	1.00(10)	0.15(3)	1.00(10)	0.05(2)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	-	0.00(0)
$SM_3 + MM_1$	5k	0.22(7)	1.00(10)	0.50(10)	1.00(10)	0.40(6)	0.00(0)	0.02(1)	0.00(0)	0.20(2)	1.00(10)	-	1.00(10)
	10k	0.15(5)	1.00(10)	0.50(10)	1.00(10)	0.10(2)	0.00(0)	(0.00(0))	0.00(0)	0.10(1)	1.00(10)	-	1.00(10)
	50k	0.05(2)	1.00(10)	0.50(10)	1.00(10)	0.05(1)	0.00(0)	0.00(0)	0.00(0)	0.00(0)	1.00(10)	-	1.00(10)

• Can we recover the ground-truth structure, including the measurement model and the

structure model?

Conclusions and Future work

- Establish a connection between the tensor rank condition and the graphical patterns
- Provide the simple but efficient algorithm for learning discrete latent structure model
- Future work: hierarchical structure, impure structure condition...

THANK YOU FOR YOUR ATTENTION!