

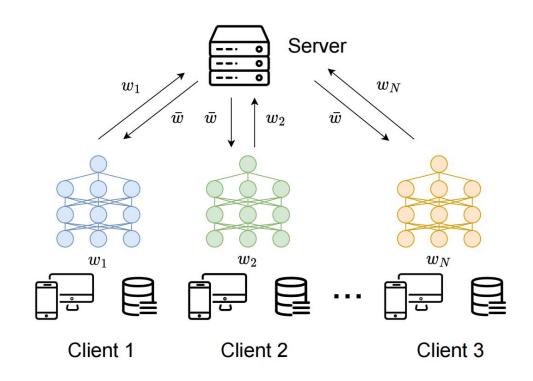
Why Go Full? Elevating Federated Learning Through Partial Network Updates

Haolin Wang^נ, Xuefeng Liu^{◊♡}, Jianwei Niu^{◊♡‡}, Wenkai Guo^{◊†}, Shaojie Tang[♠]
◊ State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University
♠ Center for AI for Business Innovation, School of Management, University at Buffalo.
♡ Zhongguancun Laboratory
{wanghaolin, liu_xuefeng, niujianwei, kyeguo}@buaa.edu.cn shaojiet@buffalo.edu

The Paradigm of Federated Learning

Target:

• Clients collaboratively train a global model without sharing private data.



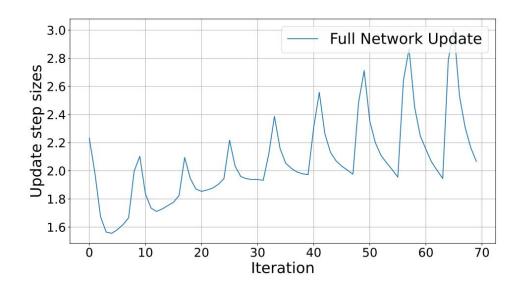
Process:

- Server broadcasts the global model.
- Clients locally update the model.
- Server aggregates all local updates to obtain an updated global model.
- Repeat the process.

Core Observation: Layer Mismatch

Our question:

- Are global models really optimal for local tasks?
- Traditional View: Yes. The strong test results suggest better generalization.
- Our View: Probably not. Analysis of gradient norms in each iteration reveals potential issues.



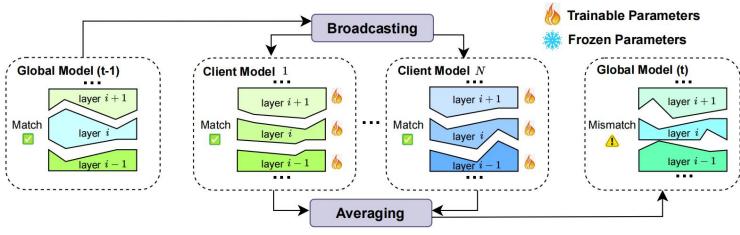
Observations:

- In federated learning, the gradient norm spikes after each aggregation.
- This can lead to training instability.
- Indicates that global models may not always suit individual local tasks.

Understanding the Phenomenon

Hypothesis:

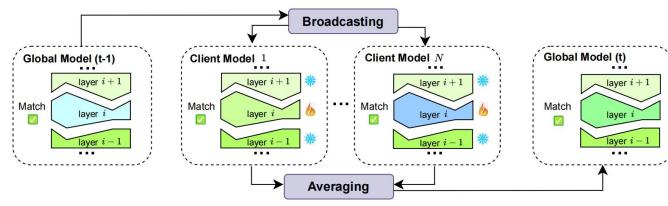
- During back-propagation, the gradient for one layer depends on the parameters of the next.
- We believe parameter mismatch between layers causes this instability.



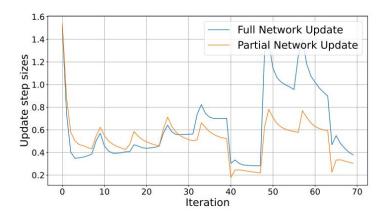
(a) FedAvg: Full network updates lead to layer mismatch.

Proposal:

- Train only part of the network in each round.
- Keep some layers frozen as "anchors" to enhance stability across updates.



(b) FedPart: Partial network updates help to reduce layer mismatch.



Advantages of Partial Network Training:

- Mitigates the layer mismatch issue.
- Reduces communication and computation costs.

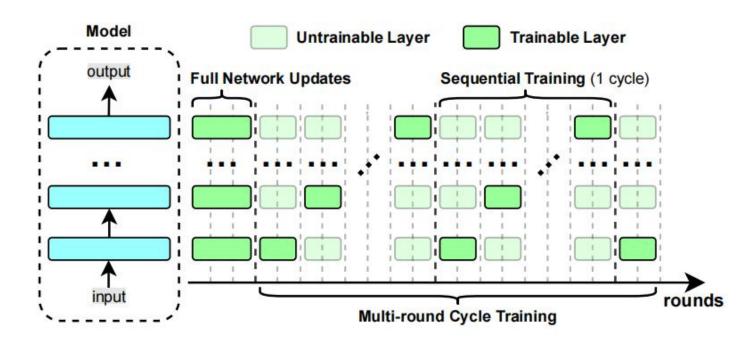
Disadvantages:

- Slower learning efficiency: Reduced convergence speed and performance.
- Less effective knowledge sharing: Communication between clients is limited.

Improvements: Selecting Trainable Layers

Core ideas:

- Full parameter training is still essential at times.
- Implement partial network training sequentially.
- Repeat sequential training across multiple rounds for better results.



Experimental Results

Settings:

- Baseline methods: FedAvg, FedProx, FedMoon.
- Our method shows significant improvements.

Data	C	Fed FNU	Avg FedPart	Fedl FNU	Prox FedPart	FedN FNU	Joon FedPart		omm. FedPart		omp.
	 1		57.7 (±0.5)				A CONTRACTOR OF THE ACTU		1.35	4.38	3.21
CIF AR-	2	58.6 (±1.6)	60.2 (±0.4)	60.2 (±1.5)	59.9 (±0.5)	61.1 (±0.1)	59.4 (±0.2)	9.65	2.70	8.76	6.43
10			61.7 (±0.3) 62.8 (±0.2)						4.05 5.40	13.2 17.5	9.64 12.9
CIF			31.0 (±0.5) 34.8 (±0.5)						1.38 2.75	4.39	3.22 6.44
AR-	3	34.3 (±0.2)	36.1 (±0.5)	34.5 (±0.5)	36.7 (±0.4)	34.6 (±1.1)	36.5 (±0.6)	14.8	4.13	13.2	9.66
100			37.0 (±0.6) 37.2 (±0.7)						5.51 6.88	17.6 21.9	12.9 16.1
Tiny-			17.1 (±0.2) 20.3 (±0.1)						1.40 2.81	17.5	12.9 25.7
-		17.6 (±0.4)	20.8 (±0.2)	18.0 (±0.5)	20.7 (±0.1)	18.4 (±0.8)	21.1 (±0.1)	15.1	4.21	52.6	38.6
eNet			21.1 (±0.1) 21.4 (±0.2)						5.62 7.02	70.1 87.7	51.4 64.3

Ablation Studies

Q1: Can we enhance models already converged using full training?

A1: Yes. This further validates that our approach reduces the layer mismatch problem.

Dataset	State	0 init.	5 init.	60 init. 58.92	
CIFAR-	bef.	0	41.56		
10	aft.	58.48	61.25	66.18	
CIFAR-	bef.	0	20.38	34.16	
100	aft.	29.53	33.59	36.65	
Tiny-	bef.	0	9.11	16.25	
ImageNet	aft.	16.81	20.69	19.99	

Table 6: Impact of the warm-up rounds.

Q2: Why is sequential training of layers effective?

A2: Likely because deeper layers build upon more fundamental, shallower ones.

Table 7: Impact of training sequences

Dataset	C	Seq.	Rev.	Ran.
CIEAD	1	58.80	58.53	59.62
CIFAR- 10	2	60.46	59.76	59.97
10	3	58.80 60.46 61.25	60.19	60.23
CIEAD	1	30.07	27.84	29.58
CIFAR- 100	2	32.53	29.41	30.92
100	3	30.07 32.53 33.59	31.79	31.44
Tiny-	1	16.00	13.15	15.91
-	2	19.25	15.62 18.33	17.71
ImageNet	3	20.69	18.33	18.99

Thank you for listening!

Lab Homepage

Source Code