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Motivation
Rare-events data with sparse models

Rare-events data are highly imbalanced binary response data.
▶ Rare diseases, click-data on recommendation system.
▶ Massive, highly imbalanced.
▶ Invovle sparse models, e.g., limited number of key genes related to

rare-diseases.
▶ Variable selection is not studied.

Subsampling is a popular approach for rare-events data analysis.
▶ Data balancing, reducing computational burdens.
▶ Usually done with strategy:

1 Keeping all ones.
2 Subsampling zeros according to an important function φ(x).

▶ Non-uniform subsampling reduces information loss.
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Motivation
Scale-dependent issue

Existing optimal subsampling functions are scale-dependent.

May lead to ine�cient results.

A wide concern in literature for various data types and models.

10 2 10 1 100 101 102

s

10 1.4

10 1.2

pr
ed

ict
io

n 
er

ro
r

(a) Non-sparse parameter

10 2 10 1 100 101 102

s

10 1.0

10 0.8

pr
ed

ict
io

n 
er

ro
r

(b) Sparse parameter

A-OS
L-OS
P-OS
Uni

3 / 11



Problem setup

Rare-events Model:

p(x ;θt) := P(y = 1|x) = eαt+f (x ;βt)

1+ eαt+f (x ;βt)
=

eg(x ;θt)

1+ eg(x ;θt)
.

Then, αt → −∞ as N → ∞ implies that N1
N0

→ 0.

IPW Adaptive Lasso for Variable selection

θ̂adpw := argmax
θ


N∗
sub∑

i=1

ℓsubi

π(x subi , y subi )
− λN

p∑
j=1

|β(j)|
|β̂pl(j)|γ

 , (1)

where ℓsubi = y subi g(x subi ;θ)− log{1+ eg(x
sub

i ;θ)}.
Both optimal probabilities and adaptive lasso requires a pilot

estimator. It is natural to combine them into one uni�ed framework.
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Theoretical analysis
Asymptotic properties of θ̂adpw

1 Consistency in variable selection: limN→∞ P(Âw = A) = 1

2 Asymptotic normality:
√
N1V

−1/2
w(A) (θ̂

adp

w(A) − θt(A))⇝ N(0, I ),

Vw(A) = V
−1
mle(A)︸ ︷︷ ︸

Full data

+ cVsub(A)︸ ︷︷ ︸
Information loss

, where

cVsub(A) ∝ cM−1
(A)E

{
e2f (x ;βt)

φ(x)
ġ⊗2
(A)(x ;θt)

}
M

−1
(A)

c = limN→∞
eαt
ρ is the imbalance rate in the subsample.

Message from theoretical analysis

The asymptotic variances Vmle(A) and Vw(A) are of order 1
N1

.

If remain enough 0's, e.g., c = 0, there will be no information loss.

In case there is information loss c > 0, we can choose φ(x) to
minimize the information loss.
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Optimal subsampling function

Traditional optimal subsampling function and limitations

1 A-optimality:

min tr(Vw(A)) ⇒ φadpA−OS(x) ∝ p(x ;θt)∥M−1
(A)ġ(A)(x ;θt)∥.

2 L-optimality:

min tr(Mw(A)) ⇒ φadpL−OS(x) ∝ p(x ;θt)∥ġ(A)(x ;θt)∥.

If g(x ,θ) = α+ x
Tβ, then φadpL−OS(x) ∝ p(x ;θt)(1+ ∥x(A)∥).

▶ Due to inaccurate pilot, scale of x(Ac ) will a�ect φ̂
adp
L−OS(x).

Construct optimal function by focusing on prediction error:

MSPE(θ̂) = Ex

[{
p(x ; θ̂)− p(x ;θt)

}2
]
.
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Optimal subsampling function

Scale-invariant optimal subsampling function

1 We prove that

N1e
−2αtMSPE(θ̂adp

w(A))⇝ E−1
{
ef (x ;βt)

}
Z
T
(A)L

T
(A)Ω(A)L(A)Z(A).

where Z(A) ∼ N(0, I ), Ω(A) = E
[
e2f (x ;βt)ġ⊗2

(A)(x ,θt)
]
, and

L(A) =M
−1
(A)M

1/2
w(A).

2 The optimal function that minimizes the asymptotic mean is

φadpP−OS(x) ∝ p(x ;θt)∥Ω
1
2

(A)M
−1
(A)ġ(A)(x ;θt)∥,

which is scale-invariant for a class of g including neural networks.

7 / 11



Penalized MSCL estimator and practical algorithm

The IPW assigns smaller weights for more informative data points

To improve the estimation e�ciency, letl subi = − log
{
ρφ(x subi )

}
,

θ̂adpmscl := argmax
θ


N∗
sub∑

i=1

ℓsubmscl,i − λN

p∑
j=1

|β(j)|
|β̂pl(j)|γ

 , (2)

where ℓsubmscl,i = y subi g(x subi ;θ)− log{1+ eg(x
sub

i ;θ)+lsubi }.

E�ciency: Vmscl(A) ≤ Vw(A), and Vmscl(A) = Vmle(A) if c = 0.

Practical Algorithm

1 First-stage screening:
1 Take a pilot sample, and obtain a lasso estimator.
2 Estimate φ̂(xi ) for i = 1, ...,N and Â.

2 Second-stage screening: Subsampling from 0's with φ̂(xi ), and
compute adaptive lasso.
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1 Case A: Small active e�ects.
2 Case B: Large and small active e�ects, di�erent signs
3 Case C: Large and small active e�ects, same signs.
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Conclusion

Conclusion

1 For rare-events data with sparse models, subsampling estimators can

be as e�cient as full data estimators under the true model

2 Traditional optimal functions are scale-dependent. The scale-invariant

function based on predition error is a better choice.

Limitation and Future work

1 Optimal functions are based on asymptotic normality and asymptotic

mean square error.

2 Optimal functions based on the quality of variable selection.

3 Non-asymptotic behaviors.
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Thank you!
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