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Ensemble Sampling

Ensemble Sampling

• Practically efficient randomized exploration strategy

• Maintains an ensemble of models, sample one to take an action.

• Has shown a significant improvement of performance in various
tasks, including DQN (Osband et al., 2016, 2018, 2019).
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Linear Ensemble Sampling

Linear Ensemble Sampling (Lu and Van Roy, 2017)
• Ensemble sampling for linear bandits

▶ Linear bandit : Arm set X ⊂ Rd, reward Yt = X⊤
t θ∗ + ηt

Algorithm Linear Ensemble Sampling

Initialize θ10, . . . , θ
m
0 ∈ Rd

for t = 1, 2, . . . T do
Sample jt ∈ [m]

Pull arm Xt = argmaxx∈X x⊤θjtt−1 and observe Yt

Update θ1t , . . . , θ
m
t ∈ Rd

end for

• Sample perturbations W j ∈ Rd and {Zj
i }

T
i=1 for each j ∈ [m].

• Each θjt is the solution of the following minimization problem:

minimize
θ∈Rd

λ
∥∥∥θ −W j/λ

∥∥∥2

2
+

t∑
i=1

(
X⊤

i θ −
(
Yi + Zj

i

))2

• Incremental updates are possible for linear models and gradient
descent-based models (e.g. neural net).
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Existing Analysis of Ensemble Sampling

Existing Analysis of Ensemble Sampling

Table: Comparison of regret bounds for linear ensemble sampling.

Paper Freq / Bayes Regret Bound Ensemble Size

Lu and Van Roy (2017) Frequentist Invalid Invalid

Qin et al. (2022) Bayesian Õ(
√
dT logK) Ω(KT )

Janz et al. (2023) Frequentist Õ(d5/2
√
T ) Θ(d log T )

This work Frequentist Õ(d3/2
√
T ) Ω(K log T )

The previous analyses were unsatisfactory since:

• Bayesian regret is weaker than frequentist regret.

• Ensemble size that scales linearly with T is impractical.

• Õ(d5/2
√
T ) is worse than Õ(d3/2

√
T ) of Thompson sampling.
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Main Result

Theorem : Regret bound of linear ensemble sampling)

Let K < ∞ be the number of arms. With λ ≥ 1, W j ∼ N (0d, λβ
2
T Id),

Zj
i ∼ N (0, β2

T ) and m ≥ Ω(K log T + log 1
δ
), the regret of linear ensemble

sampling is

RegretT = O((d log T )3/2
√
T ) .

• Õ(d3/2
√
T ) frequentist regret bound.

▶ Improves the bound of Janz et al. (2023) by a factor of d.
▶ Matches the best known regret bound of randomized algorithm (Abeille

and Lazaric, 2017), up to log factors.

• Ensemble size logarithmic in T .
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Regret Analysis (1/2)

Theorem : General regret bound for linear bandit algorithm

Assume that the agent chooses Xt = argmaxx∈X x⊤θt for some estimator
θt. Let Vt = λI +

∑t
i=1 XiX

⊤
i .

1. (Concentration) There exists a constant γ > 0 such that
∥θt − θ∗∥Vt−1

≤ γ.

2. (Optimism) There exists a constant p ∈ (0, 1] such that
P
((
x∗⊤θ∗ ≤ X⊤

t θt
)
| Ft−1

)
≥ p.

Then, the cumulative regret of T time steps is

R(T ) = Õ
(
γ

p

√
dT

)
.

• Concentration and optimism implies O(
√
T ) regret.

• Simpler and more rigorous proof utilizing Markov’s inequality



7/10

Regret Analysis (2/2)

Claim : Optimism for linear ensemble sampling

Let m be the size of ensemble and p = 0.15. There exists an event E∗

under which at least mp models in the ensemble are optimistic, and
P(E∗C) ≤ TK exp(−m/C).

• Apply Hoeffding’s inequality and the union bound over possible
sequences of arms.

• Take ensemble size m ≥ C(K log T + log 1
δ
) so that the probability of

failure is at most δ.



8/10

Relationship with Perturbed History Exploration

Linear Perturbed History Exploration (LinPHE) (Kveton et al., 2020)

• Samples fresh perturbation and recomputes perturbed estimator at
each time step.

Proposition

Linear ensemble sampling with T models and round robin model selection
rule is equivalent to LinPHE.

Corollary : Regret bound for LinPHE

LinPHE achieves Õ(d3/2
√
T ) regret bound.
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Summary

• We prove a Õ(d3/2
√
T ) regret bound for linear ensemble sampling

with ensemble of Ω(K log T ) models.

• The regret bound improves the previous result by a factor of d and
matches the best bound of randomized algorithms.

• We introduce a novel analysis framework that holds for a wide variety
of algorithms, which may be of independent interest.

• We rigorously demonstrate the relationship between linear ensemble
sampling and LinPHE, which leads to a Õ(d3/2

√
T ) regret bound for

LinPHE.
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