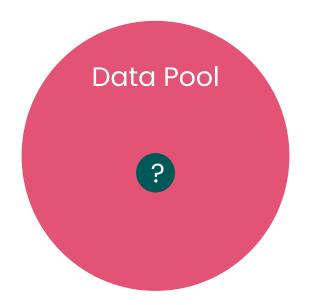
MATES: Model-Aware Data Selection for Efficient Pretraining with Data Influence Models

Zichun Yu, Spandan Das, Chenyan Xiong

Carnegie Mellon University
Language
Technologies
Institute

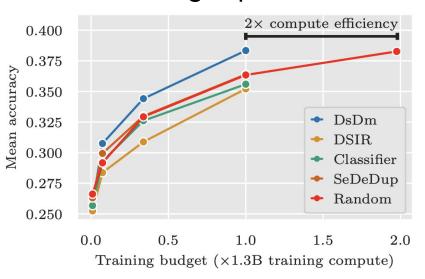
Potential of Data Selection in Pretraining

Unlimited data pool: Web Limited FLOPs: Hardware



Fix a training budget

Maximize target performance



Gaps

Current data selection methods:

- Rule-based: C4, DSIR, SemDeDup
- Influence-based: TRAK, DsDm

Static & not model-aware!

LLM-based: QuRating, FineWeb-Edu

Raffel, Colin, et al. Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR: 1-67. Xie, Sang Michael, et al. Data selection for language models via importance resampling. NeurIPS 2023. Abbas, Amro Kamal Mohamed, et al. SemDeDup: Data-efficient learning at web-scale through semantic deduplication. ICLR 2023.

Park, Sung Min, et al. TRAK: Attributing model behavior at scale. ICML 2023.

Engstrom, Logan, et al. DsDm: Model-aware dataset selection with datamodels. ICML 2024.

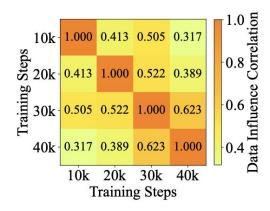
Wettig, Alexander, et al. QuRating: Selecting high-quality data for training language models. ICML 2024.

Penedo, Guilherme, et al. The FineWeb datasets: Decanting the web for the finest text data at scale. arXiv 2024.

Motivations

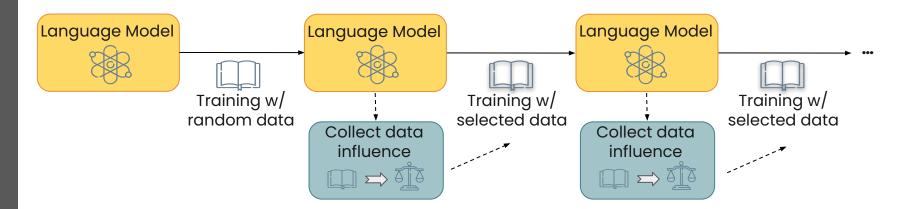
Language models know what data to learn!

- Data influence can be collected with the pretraining model itself
- Data preferences of the model will evolve over time



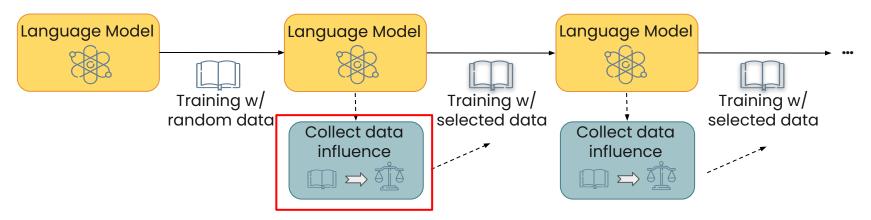
(a) Preference correlation.

Model-Aware Data Selection Framework



- Collect the model's data influence along with the pretraining
- Use the collected influence to select the most useful data dynamically

Locally Probed Oracle Data Influence



Contrib #1: Locally probe the language model to collect precise oracle data influence via one-step training

$$\mathcal{I}_{\mathcal{M}^*}(x_i; \mathcal{D}_r) \approx n \nabla_{\mathcal{M}} \mathcal{L}(\mathcal{D}_r \mid \mathcal{M}^*)^{\top} (\mathcal{M}^*_{-\frac{1}{n}, x_i} - \mathcal{M}^*) \quad \mathcal{M}^*$$
: Language Model $\approx n (\mathcal{L}(\mathcal{D}_r \mid \mathcal{M}^*_{-\frac{1}{n}, x_i}) - \mathcal{L}(\mathcal{D}_r \mid \mathcal{M}^*)) \quad \mathcal{X}_i$: Pretraining Data

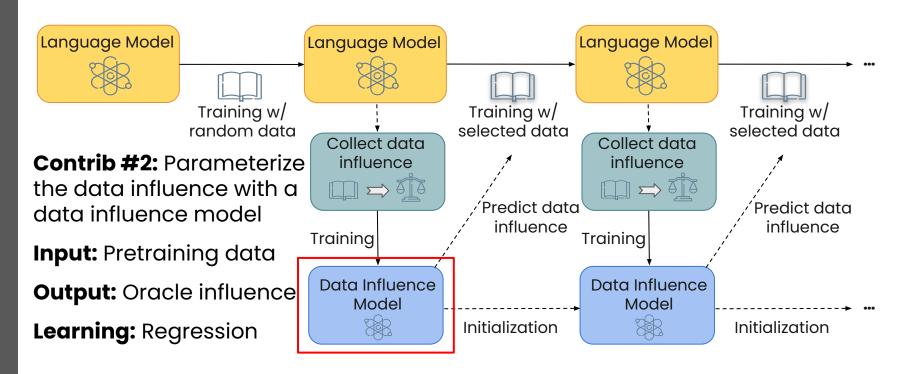
$$\propto \mathcal{L}(\mathcal{D}_r \mid \mathcal{M}^*_{-\frac{1}{n}, x_i}) + \mathcal{L}(\mathcal{D}_r \mid \mathcal{M}^*).$$

 $\boldsymbol{\mathcal{X}_i}$: Pretraining Data

 \mathcal{D}_r : Reference Data

Model's reference loss Model's reference loss before training on x_i after training on x_i

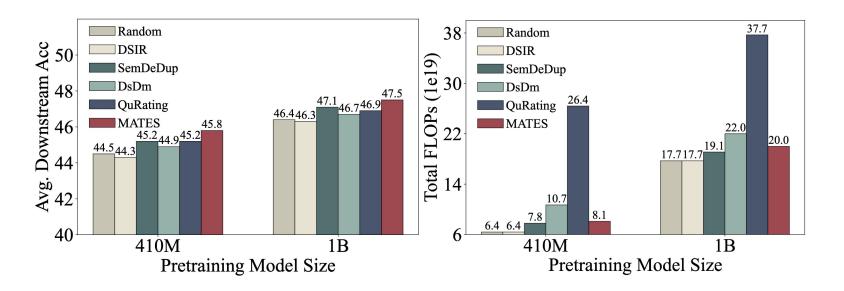
Data Influence Model



Experimental Setup

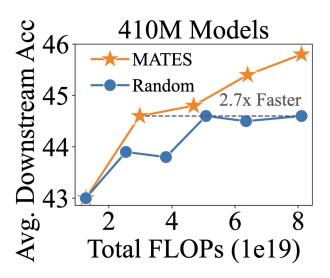
- Pretraining Model: 410M and 1B models
- Data Influence Model: Fine-tuned BERT-base (110M)
- Training Data: C4
- Reference Data: LAMBADA
- Evaluation: Avg. zero-shot accuracy across 9 downstream NLP tasks (not including LAMBADA)
- Baselines: Random, DSIR, SemDeDup, DsDm, QuRating

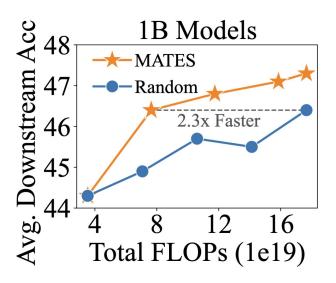
Main Results



- MATES achieves higher downstream accuracy with relatively lower FLOPs
- MATES also ranks first in the DCLM 1B-1x setting (check their repo!)

Scaling Curves





 MATES achieves the final random selection performance with less than half of the FLOPs

Effectiveness of Locally Probed Oracle Influence

Table 6: Performances of locally probed oracle data influence, MATES, and DsDm in 410M setting at 40k steps. We show zero-shot/two-shot results.

Methods	SciQ	ARC-E	ARC-C	LogiQA	OBQA
Oracle MATES DsDm	$ \begin{vmatrix} 65.4_{(1.5)}/70.4_{(1.4)} \\ 67.3_{(1.5)}/76.7_{(1.3)} \\ 66.0_{(1.5)}/72.7_{(1.4)} \end{vmatrix} $	$\begin{array}{c} \textbf{42.5}_{(1.0)}/43.6_{(1.0)} \\ 41.7_{(1.0)}/\textbf{44.4}_{(1.0)} \\ 41.7_{(1.0)}/43.2_{(1.0)} \end{array}$	$\begin{array}{c} \textbf{25.2}_{(1.3)}/25.0_{(1.3)} \\ 24.7_{(1.3)}/24.0_{(1.2)} \\ 23.7_{(1.2)}/\textbf{25.2}_{(1.3)} \end{array}$	$26.1_{(1.7)}/25.7_{(1.7)}$ $26.9_{(1.7)}/26.3_{(1.7)}$ $24.4_{(1.7)}/23.3_{(1.7)}$	$\begin{array}{c} \textbf{31.8}_{(2.1)}/\textbf{30.4}_{(2.1)} \\ 28.8_{(2.0)}/28.0_{(2.0)} \\ 29.2_{(2.0)}/29.4_{(2.0)} \end{array}$
Methods	BoolQ	HellaSwag	PIQA	WinoGrande	Average
Oracle MATES DsDm	$\begin{array}{ c c c c c }\hline & 58.9_{(0.9)}/59.1_{(0.9)}\\ & 59.6_{(0.9)}/57.0_{(0.9)}\\ & 60.3_{(0.9)}/58.1_{(0.9)}\\ \hline \end{array}$	$\begin{array}{c} \textbf{41.1}_{(0.5)}/\textbf{43.1}_{(0.5)} \\ 40.1_{(0.5)}/39.6_{(0.5)} \\ 40.4_{(0.5)}/40.2_{(0.5)} \end{array}$	68.2 _(1.1) /66.6 _(1.1) 67.6 _(1.1) / 67.7 _(1.1) 67.2 _(1.1) /66.5 _(1.1)	51.6 _(1.4) /53.2 _(1.4) 52.1 _(1.4) /51.3 _(1.4) 50.4 _(1.4) /52.2 _(1.4)	45.6 _(1.4) / 46.3 _(1.3) 45.4 _(1.3) /46.1 _(1.3) 44.8 _(1.3) /45.6 _(1.3)

- Oracle vs. DsDm: Our locally probed oracle influence is more effective than DsDm (using TRAK to compute influence)
- Oracle vs. MATES: Our data influence model is able to approximate the oracle (almost) losslessly

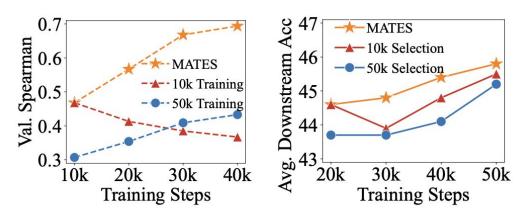
Robustness of Locally Probed Oracle Influence

Table 3: Performances of oracle selected data with different reference tasks in the 410M setting. We run the decay stage starting from the MATES model at 50k steps.

\mathcal{D}_r	SciQ	ARC-E	ARC-C	LogiQA	OBQA	BoolQ	HellaSwag	PIQA	WinoGrande	Average
LAMBADA	66.0(1.5)	42.2(1.0)	24.8(1.3)	27.2 _(1.7)	30.8(2.1)	59.1 _(0.9)	41.9 _(0.5)	68.5 _(1.1)	52.3(1.4)	45.9(1.4)
ARC-E (MC)	$64.9_{(1.5)}$	$42.4_{(1.0)}$	$24.9_{(1.3)}$	$27.8_{(1.8)}$	$30.4_{(2.1)}$	$58.0_{(0.9)}$	$41.1_{(0.5)}$	$68.1_{(1.1)}$	$51.7_{(1.4)}$	$45.5_{(1.4)}$
ARC-E (LM)	$65.3_{(1.5)}$	$43.0_{(1.0)}$	$24.8_{(1.3)}$	$28.0_{(1.8)}$	$31.8_{(2.1)}$	$58.5_{(0.9)}$	$40.7_{(0.5)}$	$67.2_{(1.1)}$	52.5 _(1.4)	$45.8_{(1.4)}$
FLAN	66.4 _(1.5)	45.1 _(1.0)	25.1 _(1.3)	28.7 _(1.8)	32.0 _(2.1)	$56.2_{(0.9)}$	$40.5_{(0.5)}$	$67.9_{(1.1)}$	52.3(1.4)	$46.0_{(1.4)}$

- Our locally probed oracle influence is robust across different reference tasks
- Different reference tasks may strengthen different model abilities

Effectiveness of Model-Aware Data Selection



(a) Influence modeling.

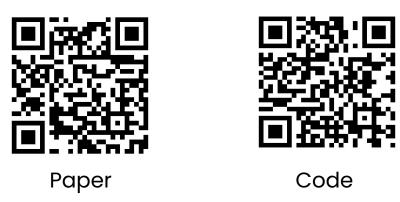
(b) Downstream accuracy.

Figure 5: Static (based on a 10k or a 50k random-pretrained model checkpoint) data selection versus model-aware data selection in influence modeling and downstream accuracy.

 Model-aware data selection is more effective than static one, either in influence modeling or downstream accuracy

Takeaways

- Data preference of the pretraining model is ever-changing
- Locally probed oracle data influence is effective to capture it
- A small data influence model can precisely learn the oracle and therefore efficiently select the effective data for the pretraining model



Email: zichunyu@andrew.cmu.edu