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Large Language Models

Instructions 
+ Exemplars
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In-Context Learning

The cafeteria had 23 apples. If they used 20 to 
make lunch and bought 6 more, how many 

apples do they have?

The answer is 27.
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In-Context Learning
Instruction: Answer the question step by step.

Q: Roger has 5 tennis balls. He buys 2 more cans of 
tennis balls. Each can has 3 tennis balls. How many 

tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each 
is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make 
lunch and bought 6 more, how many apples do they have?

A: The cafeteria had 23 apples originally. They used 20 to 
make lunch. So they had 23– 20 = 3. They bought 6 more 

apples, so they have 3 + 6 = 9. The answer is 9.

Instruction

Exemplar
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Motivation

• Good exemplars and instructions are vital to the performance
• The quality, relevance and even the order of exemplars matters!

Challenge: Best performing 
LLMs are usually black-box!

Goal: Automate the above! 5

How do we design a data selection method for LLM in-context prompting?



Formulation

where         is the validation set,     is a black-box LLM,     exemplars,
    is the exemplar sequence and            is a score function
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How to Optimize?

• We propose to use neural bandit algorithms
• Selects the next input query based on the belief of the objective given all 

past observations

a trained neural network a pretrained embedding model

exploitation of current 
score predictions

exploration based on 
uncertainties of the prediction
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Speeding Up

• Each evaluation of the NeuralUCB acquisition function requires
1. A forward pass of the embedding model
2. A forward pass of the NN
3. Computing the uncertainty                                which involves inverting the 

NTK matrix, and taking the gradient for the current
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Speeding Up

• Stage 1: Filter based on the inductive bias that using exemplars 
similar to the validation exemplars performs better
• Optimal Transport distance between                 and 

• Pre-computations of           is possible
• Cosine similarity cost function is easy-to-compute

• Stage 2: Compute NeuralUCB acquisition for the filtered 
exemplars

• We instead employ a filter-then-compute strategy
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Joint Optim. of Exemplars + Instructions

• Naturally extend to

    where instruction 

• Intuitively, the instruction     is just “another type of exemplar” 
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Experiments
Subset selection 

methods
Retrieval 
methods

Heuristics
/

Uniform
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Experiments

Effective!
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Further Improvement with Instructions

Joint optimization 
further improves 
performance!
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Summary of EASE
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EASE Conclusion

• A novel algorithm that selects the optimal ordered set of exemplars for 
in-context learning of black-box LLMs in an automated fashion 
• Proposed a query-efficient neural bandit approach
• Made computationally feasible through a technique based on optimal 

transport
• Extended to a fully automated pipeline that jointly optimize instructions and 

exemplars

• Data selection is also important in the era of LLM!
• Highly practical to use data selection for improving downstream 

usage of black-box LLMs!
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