





#### **Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars**

Zhaoxuan Wu<sup>\*1,2</sup>, Xiaoqiang Lin<sup>\*1</sup>, Zhongxiang Dai<sup>3</sup>, Wenyang Hu<sup>1</sup>, Yao Shu<sup>4</sup>, See-Kiong Ng<sup>1</sup>, Patrick Jaillet<sup>5</sup>, Bryan Kian Hsiang Low<sup>1</sup>

Equal Contribution\*

NUS<sup>1</sup>, SMART<sup>2</sup>, CUHK(SZ)<sup>3</sup>, Guangdong Lab of AI and Digital Economy(SZ)<sup>4</sup>, MIT<sup>5</sup>

## Large Language Models



## **In-Context Learning**

The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?



A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23– 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

## **Motivation**

- Good exemplars and instructions are vital to the performance
- The quality, relevance and even the order of exemplars matters!

How do we design a data selection method for LLM in-context prompting?



### Formulation

$$\max_{E \in \Omega} F(E) \triangleq \mathbb{E}_{(x,y) \in D_V}[s(f(E,x),y)],$$
$$f([E,x]) = f([e_1, e_2, \dots, e_k, x])$$
$$\underset{\text{context}}{\text{context}}$$

where  $D_V$  is the validation set, f is a black-box LLM, k exemplars, E is the exemplar sequence and  $s(\cdot, \cdot)$  is a score function

## How to Optimize?

- We propose to use neural bandit algorithms
  - Selects the next input query based on the belief of the objective given all past observations  $O_{t-1} \coloneqq \{(E_i, s_V(E_i))\}_{i=1}^{t-1}$

$$E_t = \arg\max_{E \in \Omega} \text{NeuralUCB}_t(E)$$

a trained neural network a pretrained embedding model NeuralUCB<sub>t</sub>(E) :=  $m(h(E); \theta_t) + \nu_t \sigma_{t-1}(h(E); \theta_t)$ exploitation of current score predictions  $\mu$  exploration based on uncertainties of the prediction

# **Speeding Up**

- Each evaluation of the NeuralUCB acquisition function requires
  - 1. A forward pass of the embedding model  $h({\cal E})$
  - 2. A forward pass of the NN  $m(h(E); \theta_t)$
  - 3. Computing the uncertainty  $\sigma_{t-1}(h(E); \theta_t)$  which involves inverting the NTK matrix, and taking the gradient for the current h(E)



# **Speeding Up**

- We instead employ a *filter-then-compute* strategy
- **Stage 1**: Filter based on the *inductive bias* that using exemplars similar to the validation exemplars performs better
  - Optimal Transport distance between  $\{e\}_{e\in E}$  and  $D_V$ 
    - Pre-computations of h(e) is possible
    - Cosine similarity cost function is easy-to-compute  $c(h(e),h(e')) = 1 sim_{cos}(h(e),h(e'))$



• <u>Stage 2</u>: Compute NeuralUCB acquisition for the filtered exemplars

## Joint Optim. of Exemplars + Instructions

• Naturally extend to

$$E = (p, e_1, e_2, \dots, e_k)$$

where instruction  $p \in P$ 

 $\bullet$  Intuitively, the instruction p is just "another type of exemplar"

| Experiments             |                              |                               |                               |                               |                               |                              |                               |                               |                               |                               |  |
|-------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--|
|                         | O L                          |                               |                               |                               |                               |                              |                               |                               |                               |                               |  |
|                         | Subset selection<br>methods  |                               |                               | methods                       |                               |                              | /                             |                               |                               |                               |  |
|                         |                              |                               |                               |                               |                               |                              | Uniform                       |                               |                               |                               |  |
|                         |                              |                               |                               |                               |                               |                              |                               |                               |                               |                               |  |
|                         | -                            |                               | 1                             | <b>/</b>                      | 1                             |                              |                               |                               |                               |                               |  |
|                         | DPP                          | MMD                           | от                            | Cosine                        | BM25                          | Active                       | Inf                           | Evo                           | Best-of-N                     | EASE                          |  |
| antonyms                | $70.0_{\pm 0.0}$             | $80.0_{\pm 0.0}$              | $81.7_{\pm 1.7}$              | $85.0_{\pm 0.0}$              | $85.0_{\pm 0.0}$              | $80.0_{\pm 0.0}$             | $86.7_{\pm 1.7}$              | $88.3_{\pm 1.7}$              | 90.0±0.0                      | 90.0±0.0                      |  |
| auto_categorization     | $3.3_{\pm 1.7}$              | $8.3_{\pm 1.7}$               | $0.0_{\pm 0.0}$               | $25.0 \pm 0.0$                | $16.7_{\pm 1.7}$              | $10.0_{\pm 2.4}$             | $21.7_{\pm 1.7}$              | $21.7_{\pm 1.7}$              | $20.0_{\pm 0.0}$              | $30.0 \pm 0.0$                |  |
| diff                    | $0.0_{\pm 0.0}$              | 0.0±0.0                       | $0.0_{\pm 0.0}$               | $0.0_{\pm 0.0}$               | $0.0_{\pm 0.0}$               | $0.0_{\pm 0.0}$              | $100.0{\scriptstyle \pm 0.0}$ | $100.0{\scriptstyle \pm 0.0}$ | $100.0{\scriptstyle \pm 0.0}$ | $100.0{\scriptstyle \pm 0.0}$ |  |
| larger_animal           | $70.0_{\pm 0.0}$             | $91.7{\scriptstyle\pm1.7}$    | $100.0{\scriptstyle \pm 0.0}$ | $100.0{\scriptstyle \pm 0.0}$ | $100.0{\scriptstyle \pm 0.0}$ | $66.7_{\pm 1.4}$             | $100.0{\scriptstyle \pm 0.0}$ | $100.0{\scriptstyle \pm 0.0}$ | $100.0{\scriptstyle \pm 0.0}$ | $100.0{\scriptstyle \pm 0.0}$ |  |
| negation                | $95.0{\scriptstyle \pm 0.0}$ | $95.0_{\pm 0.0}$              | $95.0 \pm 0.0$                | $95.0 \pm 0.0$                | $95.0_{\pm 0.0}$              | $95.0{\scriptstyle \pm 0.0}$ | $95.0 \pm 0.0$                | $95.0_{\pm 0.0}$              | $95.0_{\pm 0.0}$              | 95.0±0.0                      |  |
| object_counting         | $55.0_{\pm 2.9}$             | $56.7_{\pm 1.7}$              | $48.3_{\pm 1.7}$              | $61.7_{\pm 1.7}$              | $66.7_{\pm 1.7}$              | $51.7_{\pm 1.4}$             | $63.3_{\pm 4.4}$              | $70.0_{\pm 0.0}$              | $70.0_{\pm 0.0}$              | 73.3±1.7                      |  |
| orthography_starts_with | $20.0{\scriptstyle \pm 2.9}$ | $35.0{\scriptstyle \pm 0.0}$  | $61.7_{\pm 1.7}$              | $78.3_{\pm 1.7}$              | $70.0_{\pm 0.0}$              | $43.3{\scriptstyle \pm 1.4}$ | 70.0±2.9                      | $75.0 \pm 0.0$                | $78.3_{\pm 1.7}$              | 80.0±0.0                      |  |
| rhymes                  | $60.0_{\pm 0.0}$             | $51.7_{\pm 1.7}$              | $0.0_{\pm 0.0}$               | $100.0{\scriptstyle\pm0.0}$   | $80.0 \pm 0.0$                | $65.0{\scriptstyle \pm 8.2}$ | 70.0±13.2                     | $100.0{\scriptstyle \pm 0.0}$ | $100.0{\scriptstyle \pm 0.0}$ | $100.0_{\pm 0.0}$             |  |
| second_word_letter      | $10.0_{\pm 2.9}$             | $30.0 \pm 0.0$                | $28.3_{\pm 1.7}$              | $50.0_{\pm 0.0}$              | $50.0 \pm 0.0$                | $26.7{\scriptstyle\pm8.3}$   | $40.0 \pm 0.0$                | $46.7 \pm 1.7$                | 50.0±0.0                      | 53.3±1.7                      |  |
| sentence_similarity     | $20.0{\scriptstyle \pm 0.0}$ | $21.7_{\pm 3.3}$              | 40.0±2.9                      | $46.7_{\pm 1.7}$              | $53.3_{\pm 1.7}$              | $5.0_{\pm 4.1}$              | $18.3_{\pm 6.7}$              | $45.0_{\pm 0.0}$              | $51.7_{\pm 1.7}$              | 56.7±1.7                      |  |
| sentiment               | $85.0{\scriptstyle \pm 0.0}$ | $90.0{\scriptstyle \pm 0.0}$  | $85.0 \pm 0.0$                | $96.7_{\pm 1.7}$              | $100.0{\scriptstyle \pm 0.0}$ | $85.0{\scriptstyle \pm 4.1}$ | $91.7_{\pm 1.7}$              | $100.0{\scriptstyle \pm 0.0}$ | $100.0{\scriptstyle \pm 0.0}$ | $100.0{\scriptstyle \pm 0.0}$ |  |
| sum                     | $0.0 \pm 0.0$                | $0.0_{\pm 0.0}$               | $0.0_{\pm 0.0}$               | $0.0_{\pm 0.0}$               | 0.0±0.0                       | $0.0_{\pm 0.0}$              | $100.0{\scriptstyle\pm0.0}$   | $100.0{\scriptstyle \pm 0.0}$ | $100.0 \pm 0.0$               | $100.0{\scriptstyle \pm 0.0}$ |  |
| synonyms                | $10.0{\scriptstyle \pm 0.0}$ | $25.0 \pm 0.0$                | $20.0_{\pm 0.0}$              | 35.0±0.0                      | $30.0 \pm 0.0$                | $3.3{\scriptstyle \pm 1.4}$  | 26.7±1.7                      | 30.0±0.0                      | 30.0±0.0                      | $30.0_{\pm 0.0}$              |  |
| taxonomy_animal         | $43.3{\scriptstyle \pm 4.4}$ | 40.0±2.9                      | $46.7 \pm 1.7$                | 85.0±2.9                      | $80.0_{\pm 0.0}$              | $45.0{\scriptstyle \pm 6.2}$ | $70.0_{\pm 5.0}$              | $80.0 \pm 0.0$                | 80.0±0.0                      | 88.3±1.7                      |  |
| translation_en-de       | $90.0{\scriptstyle \pm 0.0}$ | $80.0 \pm 0.0$                | $80.0_{\pm 0.0}$              | 90.0±0.0                      | $85.0_{\pm 0.0}$              | 56.7±13.0                    | 90.0±0.0                      | 90.0±0.0                      | 90.0±0.0                      | 90.0±0.0                      |  |
| translation_en-es       | 90.0±0.0                     | $100.0{\scriptstyle \pm 0.0}$ | $96.7_{\pm 1.7}$              | $100.0{\scriptstyle \pm 0.0}$ | $100.0{\scriptstyle \pm 0.0}$ | $96.7_{\pm 1.4}$             | $98.3_{\pm 1.7}$              | $100.0{\scriptstyle \pm 0.0}$ | $100.0{\scriptstyle \pm 0.0}$ | 100.0±0.0                     |  |
| translation_en-fr       | $76.7_{\pm 1.7}$             | $76.7_{\pm 1.7}$              | $81.7_{\pm 1.7}$              | $85.0_{\pm 0.0}$              | $85.0_{\pm 0.0}$              | $81.7_{\pm 1.4}$             | $85.0 \pm 0.0$                | 86.7±1.7                      | $85.0_{\pm 0.0}$              | 88.3±1.7                      |  |
| word_sorting            | $26.7_{\pm 1.7}$             | $88.3_{\pm 1.7}$              | $88.3_{\pm 1.7}$              | $90.0_{\pm 0.0}$              | 71.7±1.7                      | $80.0_{\pm 0.0}$             | $88.3_{\pm 1.7}$              | $93.3_{\pm 1.7}$              | $91.7_{\pm 1.7}$              | 90.0±0.0                      |  |
| word_unscrambling       | $68.3{\scriptstyle \pm 1.7}$ | $56.7_{\pm 1.7}$              | $71.7_{\pm 1.7}$              | $75.0{\scriptstyle \pm 0.0}$  | 76.7±1.7                      | $63.3{\scriptstyle \pm 3.6}$ | $66.7_{\pm 1.7}$              | $75.0_{\pm 0.0}$              | $75.0_{\pm 0.0}$              | 78.3±1.7                      |  |
| # best-performing tasks | 2                            | 2                             | 2                             | 6                             | 4                             | 1                            | 5                             | 9                             | 9                             | 17                            |  |

## **Experiments**

| Type                  | Task                | Noise | DPP                        | MMD                          | OT                           | Cosine                       | <b>BM25</b>                  | Active                        | Inf                          | Evo                          | Best-of-N                  | EASE           |
|-----------------------|---------------------|-------|----------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------|------------------------------|----------------------------|----------------|
| Rule-based tasks      |                     | 0%    | 31.7±1.7                   | $38.3{\scriptstyle\pm3.3}$   | $50.0{\scriptstyle \pm 0.0}$ | $71.7_{\pm 1.7}$             | $70.0{\scriptstyle \pm 0.0}$ | $36.7_{\pm 1.4}$              | $56.7 \pm 7.3$               | $61.7_{\pm 1.7}$             | $66.7_{\pm 1.7}$           | 80.0±2.9       |
|                       | LR                  | 10%   | $8.3_{\pm 1.7}$            | $36.7_{\pm 1.7}$             | $48.3{\scriptstyle \pm 1.7}$ | $61.7_{\pm 1.7}$             | $61.7_{\pm 1.7}$             | $0.0{\scriptstyle \pm 0.0}$   | $58.3{\scriptstyle \pm 4.4}$ | $60.0{\scriptstyle \pm 0.0}$ | $65.0_{\pm 2.9}$           | 73.3±1.7       |
|                       |                     | 30%   | $10.0{\scriptstyle\pm0.0}$ | $28.3_{\pm 1.7}$             | $46.7_{\pm 1.7}$             | $63.3_{\pm 1.7}$             | $60.0_{\pm 0.0}$             | $40.0_{\pm 2.4}$              | $35.0{\scriptstyle \pm 2.9}$ | $53.3{\scriptstyle \pm 1.7}$ | $50.0_{\pm 0.0}$           | 76.7±1.7       |
|                       |                     | 50%   | $0.0_{\pm 0.0}$            | $38.3{\scriptstyle \pm 1.7}$ | $45.0{\scriptstyle \pm 0.0}$ | $65.0 \pm 0.0$               | $53.3{\scriptstyle \pm 1.7}$ | $0.0_{\pm 0.0}$               | $53.3{\scriptstyle \pm 1.7}$ | $46.7 \pm 1.7$               | $45.0_{\pm 0.0}$           | 78.3±4.4       |
|                       |                     | 70%   | 0.0±0.0                    | $55.0{\scriptstyle \pm 0.0}$ | $38.3{\scriptstyle \pm 3.3}$ | $65.0 \pm 0.0$               | $50.0{\scriptstyle \pm 0.0}$ | $26.7{\scriptstyle\pm5.4}$    | $30.0{\scriptstyle \pm 5.8}$ | $33.3{\scriptstyle \pm 1.7}$ | $33.3_{\pm 1.7}$           | 66.7±1.7       |
|                       |                     | 90%   | $0.0_{\pm 0.0}$            | $21.7{\scriptstyle\pm1.7}$   | $26.7{\scriptstyle\pm1.7}$   | $46.7{\scriptstyle\pm1.7}$   | $3.3{\scriptstyle \pm 1.7}$  | $0.0_{\pm 0.0}$               | $6.7{\scriptstyle \pm 3.3}$  | $8.3{\scriptstyle\pm1.7}$    | $15.0{\scriptstyle\pm0.0}$ | 53.3±1.7       |
|                       | LP-<br>variant      | 0%    | 48.3±3.3                   | 40.0±2.9                     | $41.7_{\pm 1.7}$             | $65.0_{\pm 0.0}$             | $58.3_{\pm 1.7}$             | $30.0_{\pm 0.0}$              | $61.7_{\pm 1.7}$             | $75.0_{\pm 2.9}$             | 71.7±1.7                   | 75.0±0.0       |
|                       |                     | 10%   | $0.0_{\pm 0.0}$            | $36.7 \pm 1.7$               | $40.0{\scriptstyle \pm 0.0}$ | $63.3_{\pm 3.3}$             | $60.0_{\pm 0.0}$             | $36.7_{\pm 2.7}$              | $65.0{\scriptstyle \pm 2.9}$ | $70.0{\scriptstyle \pm 2.9}$ | 73.3±1.7                   | 80.0±2.9       |
|                       |                     | 30%   | $0.0_{\pm 0.0}$            | 48.3±3.3                     | $40.0_{\pm 2.9}$             | $60.0_{\pm 0.0}$             | $55.0{\scriptstyle \pm 0.0}$ | $40.0_{\pm 7.1}$              | $53.3{\scriptstyle \pm 6.0}$ | $65.0_{\pm 2.9}$             | $65.0_{\pm 0.0}$           | $75.0 \pm 0.0$ |
|                       |                     | 50%   | $0.0_{\pm 0.0}$            | $65.0 \pm 0.0$               | $35.0{\scriptstyle \pm 2.9}$ | $63.3_{\pm 3.3}$             | $60.0{\scriptstyle \pm 0.0}$ | $38.3{\scriptstyle \pm 3.6}$  | $48.3{\scriptstyle\pm4.4}$   | $61.7{\scriptstyle\pm1.7}$   | $65.0_{\pm 0.0}$           | 78.3±1.7       |
|                       |                     | 70%   | $0.0_{\pm 0.0}$            | $46.7{\scriptstyle\pm3.3}$   | $35.0{\scriptstyle \pm 0.0}$ | $70.0{\scriptstyle \pm 0.0}$ | $60.0{\scriptstyle \pm 0.0}$ | $25.0_{\pm 8.2}$              | $60.0{\scriptstyle \pm 5.0}$ | $56.7_{\pm 1.7}$             | 56.7±1.7                   | 71.7±1.7       |
|                       |                     | 90%   | 0.0±0.0                    | $35.0{\scriptstyle \pm 2.9}$ | $50.0{\scriptstyle \pm 0.0}$ | $65.0{\scriptstyle \pm 2.9}$ | $0.0{\scriptstyle \pm 0.0}$  | $30.0{\scriptstyle \pm 12.5}$ | $50.0{\scriptstyle \pm 2.9}$ | $38.3{\scriptstyle \pm 1.7}$ | $55.0_{\pm 2.9}$           | 66.7±1.7       |
| Re-mapped label tasks | AG<br>News<br>Remap | 0%    | 20.0±2.9                   | $15.0_{\pm 0.0}$             | $26.7_{\pm 1.7}$             | $43.3_{\pm 1.7}$             | 43.3±3.3                     | $5.0_{\pm 2.4}$               | $25.0_{\pm 5.0}$             | $40.0{\scriptstyle \pm 0.0}$ | $40.0_{\pm 0.0}$           | 50.0±0.0       |
|                       |                     | 10%   | $5.0_{\pm 0.0}$            | $15.0{\scriptstyle \pm 0.0}$ | $15.0{\scriptstyle \pm 0.0}$ | $41.7_{\pm 1.7}$             | $38.3{\scriptstyle \pm 1.7}$ | $3.3{\scriptstyle\pm1.4}$     | $26.7{\scriptstyle\pm3.3}$   | $36.7{\scriptstyle\pm1.7}$   | $40.0_{\pm 0.0}$           | 51.7±1.7       |
|                       |                     | 30%   | $10.0 \pm 0.0$             | $5.0 \scriptstyle \pm 0.0$   | $5.0{\scriptstyle \pm 0.0}$  | $40.0{\scriptstyle \pm 0.0}$ | $36.7{\scriptstyle\pm1.7}$   | $1.7{\scriptstyle\pm1.4}$     | $10.0{\scriptstyle \pm 0.0}$ | $40.0{\scriptstyle \pm 0.0}$ | $43.3_{\pm 1.7}$           | 55.0±0.0       |
|                       |                     | 50%   | $5.0_{\pm 0.0}$            | $10.0{\scriptstyle \pm 0.0}$ | $5.0{\scriptstyle \pm 0.0}$  | $43.3{\scriptstyle \pm 1.7}$ | $35.0{\scriptstyle \pm 0.0}$ | $3.3{\scriptstyle \pm 1.4}$   | $20.0{\scriptstyle \pm 5.0}$ | $35.0{\scriptstyle \pm 0.0}$ | $35.0_{\pm 0.0}$           | 55.0±2.9       |
|                       |                     | 70%   | $5.0_{\pm 0.0}$            | $25.0{\scriptstyle \pm 0.0}$ | $8.3{\scriptstyle\pm1.7}$    | $50.0 \pm 0.0$               | $35.0{\scriptstyle \pm 0.0}$ | $1.7{\scriptstyle\pm1.4}$     | $11.7{\scriptstyle \pm 0.7}$ | $38.3{\scriptstyle \pm 1.7}$ | $46.7_{\pm 1.7}$           | 58.3±0.0       |
|                       |                     | 90%   | $5.0_{\pm 0.0}$            | $18.3{\scriptstyle \pm 1.7}$ | $5.0{\scriptstyle \pm 0.0}$  | $40.0{\scriptstyle \pm 0.0}$ | $10.0{\scriptstyle \pm 0.0}$ | $15.0{\scriptstyle \pm 6.2}$  | $35.0{\scriptstyle \pm 0.0}$ | $35.0{\scriptstyle \pm 0.0}$ | $41.7_{\pm 1.7}$           | 53.3±1.7       |
|                       | SST5<br>Reverse     | 0%    | 20.0±0.0                   | $10.0{\scriptstyle \pm 0.0}$ | $13.3{\scriptstyle \pm 1.7}$ | $40.0_{\pm 0.0}$             | $40.0 \pm 0.0$               | $15.0_{\pm 2.4}$              | $33.3{\scriptstyle \pm 6.7}$ | $35.0{\scriptstyle \pm 2.9}$ | $40.0_{\pm 0.0}$           | 50.0±2.9       |
|                       |                     | 10%   | 16.7±1.7                   | $10.0{\scriptstyle \pm 0.0}$ | $15.0{\scriptstyle \pm 0.0}$ | 48.3±1.7                     | $40.0_{\pm 0.0}$             | $13.3{\scriptstyle \pm 2.7}$  | $23.3{\scriptstyle \pm 6.7}$ | $33.3_{\pm 3.3}$             | $40.0_{\pm 0.0}$           | 48.3±1.7       |
|                       |                     | 30%   | $23.3_{\pm 1.7}$           | $6.7_{\pm 1.7}$              | $25.0{\scriptstyle \pm 2.9}$ | $40.0_{\pm 0.0}$             | $40.0 \pm 0.0$               | $21.7{\scriptstyle\pm3.6}$    | $26.7{\scriptstyle\pm1.7}$   | $30.0{\scriptstyle \pm 0.0}$ | $31.7_{\pm 1.7}$           | 46.7±3.3       |
|                       |                     | 50%   | $21.7_{\pm 1.7}$           | $15.0{\scriptstyle \pm 0.0}$ | $15.0 \pm 0.0$               | $43.3_{\pm 1.7}$             | $33.3{\scriptstyle \pm 1.7}$ | $21.7{\scriptstyle\pm1.4}$    | $23.3{\scriptstyle \pm 1.7}$ | $28.3{\scriptstyle \pm 1.7}$ | $30.0_{\pm 0.0}$           | 46.7±3.3       |
|                       |                     | 70%   | $25.0 \pm 0.0$             | $23.3{\scriptstyle \pm 1.7}$ | $23.3{\scriptstyle \pm 1.7}$ | $40.0{\scriptstyle \pm 0.0}$ | $30.0{\scriptstyle \pm 0.0}$ | $20.0{\scriptstyle \pm 2.4}$  | $25.0{\scriptstyle \pm 2.9}$ | $36.7{\scriptstyle\pm1.7}$   | $36.7_{\pm 1.7}$           | $45.0 \pm 5.0$ |
|                       |                     | 90%   | $20.0_{\pm 0.0}$           | $15.0{\scriptstyle \pm 2.9}$ | $20.0{\scriptstyle \pm 0.0}$ | $30.0{\scriptstyle \pm 0.0}$ | $30.0{\scriptstyle \pm 0.0}$ | $13.3{\scriptstyle \pm 2.7}$  | $21.7{\scriptstyle\pm1.7}$   | $30.0{\scriptstyle \pm 0.0}$ | $30.0_{\pm 0.0}$           | 31.7±1.7       |

**Effective!** 

## **Further Improvement with Instructions**

|                           | EASE                         | EASE<br>with instructions     | Improve<br>-ment |
|---------------------------|------------------------------|-------------------------------|------------------|
| antonyms                  | $90.0{\scriptstyle \pm 0.0}$ | $85.0_{\pm 0.0}$              | -5.0 ↓           |
| auto_categorization       | $30.0_{\pm 0.0}$             | 56.7±1.7                      | 26.7 ↑           |
| negation                  | $95.0 \pm 0.0$               | $100.0{\scriptstyle \pm 0.0}$ | 5.0 ↑            |
| object_counting           | $73.3_{\pm 1.7}$             | 75.0±0.0                      | 1.7 ↑            |
| orthography_starts_with   | $80.0_{\pm 0.0}$             | 81.7±1.7                      | 1.7 ↑            |
| second_word_letter        | $53.3_{\pm 1.7}$             | $100.0_{\pm 0.0}$             | 46.7 ↑           |
| sentence_similarity       | $56.7_{\pm 1.7}$             | 58.3±1.7                      | 1.7 ↑            |
| synonyms                  | $30.0_{\pm 0.0}$             | 31.7±1.7                      | 1.7 ↑            |
| taxonomy_animal           | $88.3_{\pm 1.7}$             | 100.0±0.0                     | 11.7 ↑           |
| translation_en-de         | 90.0±0.0                     | 90.0±0.0                      | 0.0 0            |
| translation_en-fr         | 88.3±1.7                     | $85.0_{\pm 0.0}$              | -3.3 ↓           |
| word_sorting              | 90.0±0.0                     | 93.3±1.7                      | 3.3 ↑            |
| word_unscrambling         | $78.3_{\pm 1.7}$             | 80.0±0.0                      | 1.7 1            |
| LR (10% noise)            | 73.3±1.7                     | 45.0±15.0                     | -28.3 🗸          |
| LP-variant (10% noise)    | 80.0±2.9                     | 86.7±1.7                      | 6.7 1            |
| AG News Remap (10% noise) | $51.7_{\pm 1.7}$             | $65.0_{\pm 0.0}$              | 13.3 ↑           |
| SST5 Reverse (10% noise)  | $48.3_{\pm 1.7}$             | 53.3±1.7                      | 5.0 1            |

#### Joint optimization further improves performance!

## **Summary of EASE**



## **EASE Conclusion**

- A novel algorithm that selects the optimal ordered set of exemplars for in-context learning of black-box LLMs in an automated fashion
  - Proposed a *query-efficient* neural bandit approach
  - Made computationally feasible through a technique based on optimal transport
  - Extended to a fully automated pipeline that *jointly optimize* instructions and exemplars
- Data selection is also important in the era of LLM!
- Highly practical to use data selection for improving downstream usage of black-box LLMs!