NeurIPS-24

Towards Next-Level Post-Training Quantization of Hyper-Scale Transformers

Junhan Kim, Chungman Lee, Eulrang Cho, Kyungphil Park, Ho-young Kim, Joonyoung Kim, Yongkweon Jeon

{jun_one.kim, chungman.lee, dragwon.jeon}@samsung.com

Samsung Research

Introduction

- Motivation
 - With the explosive growth in model complexity, the performance of LLMs has been advancing.
 - The growth in scale has resulted in a corresponding increase in computational costs.

 \rightarrow Efficient processing and compression of LLMs is required.

- Quantization is a promising solution and indispensable procedure for facilitating the efficient deployment on devices that mainly support fixedpoint arithmetic.
- Considering the model complexity and required resources (e.g., training costs and available dataset), quantization-aware training (QAT) is not practical for compressing LLMs with billions of parameters.
 - \rightarrow Recent studies have focused more on PTQ.

Classic PTQ Methods

• Key idea

 Instead of choosing the nearest quantized value, classic PTQ methods attempt to assign quantized values that minimize the loss degradation incurred by the quantization:

min E [$\Delta \mathbf{w}^T \mathbf{H}^{(w)} \Delta \mathbf{w}$]

- Computing and storing the Hessian matrix **H**^(w) is infeasible.
 - → Independence between different layers or blocks (e.g., Transformer block) has been assumed, relaxing the problem into the layer-wise or block-wise reconstruction problem:

 $\min \mathbb{E} \left[\left\| Q(\mathbf{W}^{(\ell)}) \mathbf{X} - \mathbf{W}^{(\ell)} \mathbf{X} \right\|_{F}^{2} \right] \quad \text{(layerwise recon.)} \\ \min \mathbb{E} \left[\left\| f(Q(\mathbf{W}^{(\ell)}), \mathbf{X}) - f(\mathbf{W}^{(\ell)}, \mathbf{X}) \right\|_{F}^{2} \right] \quad \text{(blockwise recon.)}$

 Approaches targeting block-wise reconstruction perform better due to the consideration of inter-layer dependencies inside the Transformer block.

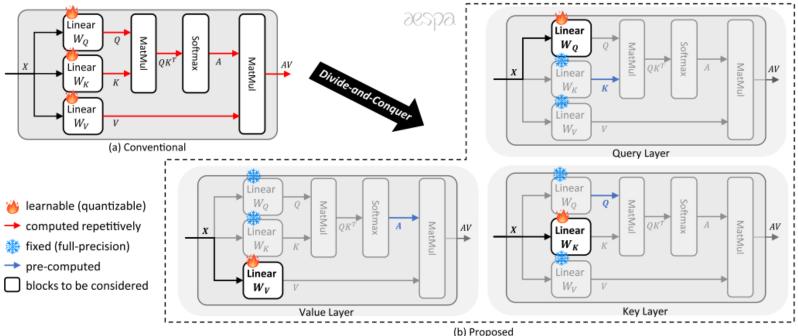
PTQ for LLMs

• Recent trends

- While achieving competitive performance, classic PTQ methods require too much processing time (e.g., more than 20 GPU hours for 3B models).
 - → NOT suitable for the real-world deployment of LLMs where models to be deployed are frequently updated.
- For simplicity, recent methods either focus on layer-wise reconstruction (NOT block-wise reconstruction) or give up optimizing a weight-rounding policy:
 - GPTQ: weight-rounding optimization method targeting layer-wise reconstruction
 - AWQ, Z-Fold, OmniQuant, AffineQuant: quantization parameter (e.g., scale and zero-point) optimization methods that rely on a naïve nearestrounding.
 - \rightarrow Limited low-bit quantization performance

Proposed Method

- Main goal
 - Optimize the weight-rounding policy efficiently, yet targeting block-wise reconstruction to consider inter-layer dependencies inside the attention module
- Key idea 1 novel quantization strategy
 - Quantize each layer separately, yet targeting block-wise reconstruction



Proposed Method

• Key idea 2 – refined quantization objectives

- Under the proposed quantization strategy, the block-wise reconstruction error can be simplified by factoring out common terms affected by fullprecision layers.
- e.g., quantization of value projection layer (W_V)

(original)
$$\min_{\Delta W_Q, \Delta W_K, \Delta W_V} \mathbb{E} \left[\left\| \operatorname{SA}(\widehat{Q}, \widehat{K}, \widehat{V}) - \operatorname{SA}(Q, K, V) \right\|_F^2 \right]$$

(proposed)
$$\min_{\Delta W_Q, \Delta W_K, \Delta W_V} \mathbb{E} \left[\left\| \operatorname{SA}(Q, K, \widehat{V}) - \operatorname{SA}(Q, K, V) \right\|_F^2 \right]$$
$$= \mathbb{E} \left[\left\| A \widehat{V} - A V \right\|_F^2 \right] = \mathbb{E} \left[\left\| A \Delta V \right\|_F^2 \right]$$
$$= \mathbb{E} \left[\left\| \Delta W_V X A^T \right\|_F^2 \right].$$

Proposed Method

• Key idea 3 – efficient loss computation based on pre-computations

- Compute the value of loss functions based on certain pre-computed values
- e.g., quantization of value projection layer (W_V)

$$\mathbb{E}\left[\left\|\Delta \boldsymbol{W}_{V}\boldsymbol{X}\boldsymbol{A}^{T}\right\|_{F}^{2}\right] = \operatorname{tr}\left(\Delta \boldsymbol{W}_{V}\mathbb{E}\left[\boldsymbol{X}\boldsymbol{A}^{T}\boldsymbol{A}\boldsymbol{X}^{T}\right]\Delta \boldsymbol{W}_{V}^{T}\right)$$

- By computing E[XA^TAX^T] in advance and reusing it in the quantization process, we can avoid the overhead of computing E[||ΔW_VXA^T||²_F] for every input X.
- Since E[XA^T AX^T] is pre-computed using all calibration data, we can compute the loss considering the entire calibration dataset without any memory issues.
 - → Better estimate of the true gradient can be obtained, which could lead to a more consistent update and faster convergence.

Experimental Results

• Outstanding low-bit performance with reasonable processing time

(a) wiki text-2										
Precision	Method	OPT				LLaMA			LLaMA2	
		125M	1.3B	2.7B	6.7B	7B	13B	30B	7B	13B
FP16	Baseline	27.65	14.63	12.47	10.86	5.677	5.091	4.101	5.472	4.884
INT3	BRECQ [18]	33.25	16.09	13.37	OOM	OOM	OOM	OOM	OOM	OOM
	OmniQuant [27]	39.14	17.59	14.87	12.87	6.716	5.798	4.963	6.798	5.751
	AffineQuant [20]	36.15	17.26	14.25	12.30	6.712	5.820	4.951	6.795	5.757
	aespa	32.71	15.79	13.14	11.23	6.579	5.611	4.688	6.241	5.462
INT2	BRECQ [18]	60.38	56.25	113.6	OOM	OOM	OOM	OOM	OOM	OOM
	OmniQuant [27]	NaN	399.6	1.6e3	4.9e3	18.18	NaN	10.15	35.40	20.19
	AffineQuant [20]	143.9	56.45	35.16	25.32	18.83	11.08	NaN	NaN	18.49
	aespa	71.18	24.26	22.22	15.71	11.94	10.30	7.845	13.99	12.14

Table 1: Performance (PPL \downarrow) of the proposed *aespa* and conventional block-wise PTQ methods.

(a) WikiText-2

fuele it cost of despu and conventional methods (of Lot s)	Table 7: Cost	of <i>aespa</i> an	d conventional	methods	(GFLOPS)
--	---------------	--------------------	----------------	---------	----------

	125M	350M	1.3B	2.7B	6.7B	13B
\mathcal{C}_{exist}	6.7	7.5	11	15	34	41
\mathcal{C}_{aespa}	0.24	0.42	1.6	3.2	13	20

Table 14: Time and memory cost of aespa and existing methods

(a) INT2 quantization processing time

Method	OPT						
wiethou	125M	1.3B	2.7B	6.7B			
Brecq [18] <i>aespa</i>	108.2 min 4.78 min	10.71 hr 1.24 hr	19.15 hr 2.83 hr	OOM 10.24 hr			

Conclusion

- Propose a novel quantization method that optimizes the weightrounding policy efficiently, yet targets block-wise reconstruction to consider inter-layer dependencies inside the attention module.
- Adopt a divide-and-conquer approach, simplifying the conventional quantization objective that requires repetitive compute-intensive attention operations.
- Propose a pre-computation-based efficient loss computation approach that facilitates 10 times faster quantization process.
- Code will be available at

https://github.com/SamsungLabs/aespa