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Problem Setup
(Agnostic) PAC bandit multiclass classification

Domain , label space  with , hypothesis class , (unknown) distribution  over .𝒳 𝒴 |𝒴 | = K ℋ ⊆ {𝒳 → 𝒴} 𝒟 𝒳 × 𝒴

For i = 1,2,3,… :

• Environment generates ,  is revealed to the learner;(xi, yi) ∼ 𝒟 xi

• Learner predicts ;̂yi ∈ 𝒴

• Learner observes whether or not prediction  is correct, namely  (bandit feedback).̂yi 1{ ̂yi = yi}

Objective (PAC learning): Given , learn  such that w.p. at least :ϵ, δ > 0 ĥ ∈ ℋ 1 − δ
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Performance is measured by sample complexity: # of samples required for PAC guarantee.
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• Bandit multiclass classification is a case of contextual bandits with sparse rewards. Despite sparsity, the 

optimal regret for bandit multi class classification is lower bounded by  (Erez et al. ’24).Ω( KT)

* Here and henceforth we omit  factorslog( |ℋ | /δ)



Known Results
• A naive approach allows for a sample complexity of * by sampling labels at random and 

estimating the expected rewards of all hypotheses in .
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• Such rates can be obtained while also minimizing regret using efficient algorithms (e.g. Dudik et al. ’11, 

Agrawal et al. ’14) with regret bounds of  for contextual bandits.Õ ( KT)
• Bandit multiclass classification is a case of contextual bandits with sparse rewards. Despite sparsity, the 

optimal regret for bandit multi class classification is lower bounded by  (Erez et al. ’24).Ω( KT)

Question: Is it possible to guarantee rates faster than  for 


bandit PAC multiclass classification using an efficient algorithm? 

K/ϵ2

* Here and henceforth we omit  factorslog( |ℋ | /δ)
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(ϵ, δ)

Õ ((K9 +
1
ϵ2 ) log

|ℋ |
δ )

• In the regime where , this rate is asymptotically faster than .ϵ ≪ K−4 K/ϵ2

• Nearly matches the full-information rate of !1/ϵ2

* Given access to a weighted ERM oracle for ℋ
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Phase 2: Sample  hypotheses from  and output the hypothesis with highest estimated reward.≈ 1/ϵ2 ̂P

(Intuition: Bernstein’s inequality guarantees that  samples suffice in order to uniformly estimates the 
rewards for all hypotheses in .)
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