Liad Erez

Fast Rates for Bandit PAC Multiclass Classification

European Research Council

Established by the European Commission

Blavatnik School of Computer Science Raymond & Beverly Sackler
Faculty of Exact Sciences
Tel Aviv University

Joint work with: Alon Cohen, Tomer Koren, Yishay Mansour, Shay Moran

Lemon?

Lemon?

Domain $\mathscr X$, label space $\mathscr Y$ with $|\mathscr Y|=K$, hypothesis class $\mathscr H\subseteq\{\mathscr X\to\mathscr Y\}$, (unknown) distribution $\mathscr D$ over $\mathscr X\times\mathscr Y.$

For $i = 1, 2, 3, \ldots$:

Domain $\mathscr X$, label space $\mathscr Y$ with $|\mathscr Y|=K$, hypothesis class $\mathscr H\subseteq\{\mathscr X\to\mathscr Y\}$, (unknown) distribution $\mathscr D$ over $\mathscr X\times\mathscr Y.$

Domain $\mathscr X$, label space $\mathscr Y$ with $|\mathscr Y|=K$, hypothesis class $\mathscr H\subseteq\{\mathscr X\to\mathscr Y\}$, (unknown) distribution $\mathscr D$ over $\mathscr X\times\mathscr Y.$ For $i = 1, 2, 3, \ldots$:

• Environment generates $(x_i, y_i) \sim \mathcal{D}$, x_i is revealed to the learner;

Domain $\mathscr X$, label space $\mathscr Y$ with $|\mathscr Y|=K$, hypothesis class $\mathscr H\subseteq\{\mathscr X\to\mathscr Y\}$, (unknown) distribution $\mathscr D$ over $\mathscr X\times\mathscr Y.$ For $i = 1, 2, 3, \ldots$:

- Environment generates $(x_i, y_i) \sim \mathcal{D}$, x_i is revealed to the learner;
- Learner predicts $\hat{y}_i \in \mathcal{Y}$; ̂

Domain $\mathscr X$, label space $\mathscr Y$ with $|\mathscr Y|=K$, hypothesis class $\mathscr H\subseteq\{\mathscr X\to\mathscr Y\}$, (unknown) distribution $\mathscr D$ over $\mathscr X\times\mathscr Y.$ For $i = 1, 2, 3, \ldots$:

- Environment generates $(x_i, y_i) \sim \mathcal{D}$, x_i is revealed to the learner;
- Learner predicts $\hat{y}_i \in \mathcal{Y}$; ̂
- Learner observes whether or not prediction \hat{y}_i is correct, namely $\mathbf{1}\{\hat{y}_i = y_i\}$ (bandit feedback).

Domain $\mathscr X$, label space $\mathscr Y$ with $|\mathscr Y|=K$, hypothesis class $\mathscr H\subseteq\{\mathscr X\to\mathscr Y\}$, (unknown) distribution $\mathscr D$ over $\mathscr X\times\mathscr Y.$ For $i = 1, 2, 3, \ldots$:

- Environment generates $(x_i, y_i) \sim \mathcal{D}$, x_i is revealed to the learner;
- Learner predicts $\hat{y}_i \in \mathcal{Y}$; ̂
- Learner observes whether or not prediction \hat{y}_i is correct, namely $\mathbf{1}\{\hat{y}_i = y_i\}$ (bandit feedback).

Objective (PAC learning): Given $\epsilon, \delta > 0$, learn $h \in \mathcal{H}$ such that w.p. at least $1 - \delta$: ̂

Domain $\mathscr X$, label space $\mathscr Y$ with $|\mathscr Y|=K$, hypothesis class $\mathscr H\subseteq\{\mathscr X\to\mathscr Y\}$, (unknown) distribution $\mathscr D$ over $\mathscr X\times\mathscr Y.$ For $i = 1, 2, 3, \ldots$:

- Environment generates $(x_i, y_i) \sim \mathcal{D}$, x_i is revealed to the learner;
- Learner predicts $\hat{y}_i \in \mathcal{Y}$; ̂
- Learner observes whether or not prediction \hat{y}_i is correct, namely $\mathbf{1}\{\hat{y}_i = y_i\}$ (bandit feedback).

Objective (PAC learning): Given $\epsilon, \delta > 0$, learn $h \in \mathcal{H}$ such that w.p. at least $1 - \delta$: ̂ $L_{\mathscr{D}}(h) - L_{\mathscr{D}}(h) \leq \epsilon \quad \forall h \in \mathcal{H},$ ̂

Domain $\mathscr X$, label space $\mathscr Y$ with $|\mathscr Y|=K$, hypothesis class $\mathscr H\subseteq\{\mathscr X\to\mathscr Y\}$, (unknown) distribution $\mathscr D$ over $\mathscr X\times\mathscr Y.$ For $i = 1, 2, 3, \ldots$:

- Environment generates $(x_i, y_i) \sim \mathcal{D}$, x_i is revealed to the learner;
- Learner predicts $\hat{y}_i \in \mathcal{Y}$; ̂
- Learner observes whether or not prediction \hat{y}_i is correct, namely $\mathbf{1}\{\hat{y}_i = y_i\}$ (bandit feedback).

Objective (PAC learning): Given $\epsilon, \delta > 0$, learn $h \in \mathcal{H}$ such that w.p. at least $1 - \delta$: ̂ $L_{\mathscr{D}}(h) - L_{\mathscr{D}}(h) \leq \epsilon \quad \forall h \in \mathcal{H},$ ̂

where $L_{\mathscr{D}}(h) := \Pr_{(x,y)\sim \mathscr{D}} \left[h(x) \neq y \right]$ is the zero-one population loss of $h.$

Domain $\mathscr X$, label space $\mathscr Y$ with $|\mathscr Y|=K$, hypothesis class $\mathscr H\subseteq\{\mathscr X\to\mathscr Y\}$, (unknown) distribution $\mathscr D$ over $\mathscr X\times\mathscr Y.$ For $i = 1, 2, 3, \ldots$:

- Environment generates $(x_i, y_i) \sim \mathcal{D}$, x_i is revealed to the learner;
- Learner predicts $\hat{y}_i \in \mathcal{Y}$; ̂
- Learner observes whether or not prediction \hat{y}_i is correct, namely $\mathbf{1}\{\hat{y}_i = y_i\}$ (bandit feedback).

Objective (PAC learning): Given $\epsilon, \delta > 0$, learn $h \in \mathcal{H}$ such that w.p. at least $1 - \delta$: ̂ $L_{\mathscr{D}}(h) - L_{\mathscr{D}}(h) \leq \epsilon \quad \forall h \in \mathcal{H},$ ̂

where $L_{\mathscr{D}}(h) := \Pr_{(x,y)\sim \mathscr{D}} \left[h(x) \neq y \right]$ is the zero-one population loss of $h.$

̂

Performance is measured by *sample complexity*: # of samples required for PAC guarantee.

-
-
-
-
-
-
-

estimating the expected rewards of all hypotheses in $\mathscr H.$

estimating the expected rewards of all hypotheses in $\mathscr H.$

* Here and henceforth we omit log(|ℋ|/*δ*) factors

- estimating the expected rewards of all hypotheses in $\mathscr H.$
- Agrawal et al. '14) with regret bounds of \widetilde{O}

• Such rates can be obtained while also minimizing *regret* using efficient algorithms (e.g. Dudik et al. '11, $O(NKT)$ for contextual bandits.

- estimating the expected rewards of all hypotheses in $\mathscr H.$
- Agrawal et al. '14) with regret bounds of \widetilde{O}
-

• Such rates can be obtained while also minimizing *regret* using efficient algorithms (e.g. Dudik et al. '11, $O(NKT)$ for contextual bandits.

• Bandit multiclass classification is a case of contextual bandits with sparse rewards. Despite sparsity, the optimal regret for bandit multi class classification is lower bounded by $\Omega(\sqrt{KT})$ (Erez et al. '24).

- estimating the expected rewards of all hypotheses in $\mathscr H.$
- Agrawal et al. '14) with regret bounds of \widetilde{O}
-

• Such rates can be obtained while also minimizing *regret* using efficient algorithms (e.g. Dudik et al. '11, $O(NKT)$ for contextual bandits.

• Bandit multiclass classification is a case of contextual bandits with sparse rewards. Despite sparsity, the optimal regret for bandit multi class classification is lower bounded by $\Omega(\sqrt{KT})$ (Erez et al. '24).

Question: Is it possible to guarantee rates faster than K/e^2 for

bandit PAC multiclass classification using an efficient algorithm?

-
-
-
-
-
-
-

Theorem: There is an efficient* algorithm which satisfies the (ϵ, δ) -PAC guarantee for bandit multiclass classification using a sample complexity of

Theorem: There is an efficient* algorithm which satisfies the (ϵ, δ) -PAC guarantee for bandit multiclass classification using a sample complexity of

 $*$ Given access to a weighted ERM oracle for \mathscr{H}

Theorem: There is an efficient* algorithm which satisfies the (ϵ, δ) -PAC guarantee for bandit multiclass classification using a sample complexity of

 \widetilde{O} $O(N^9 +$

* Given access to a weighted ERM oracle for $\mathcal H$

$$
\left(\frac{1}{\epsilon^2}\right) \log \frac{|\mathcal{H}|}{\delta}
$$

Theorem: There is an efficient* algorithm which satisfies the (ϵ, δ) -PAC guarantee for bandit multiclass classification using a sample complexity of

 \widetilde{O} $O(N^9 +$

* Given access to a weighted ERM oracle for $\mathcal H$

 $\log |\mathscr{H}|$ can be replaced by d for classes of finite Natarajan dimension *d*

Theorem: There is an efficient* algorithm which satisfies the (ϵ, δ) -PAC guarantee for bandit multiclass classification using a sample complexity of

 \widetilde{O} $O(N^9 +$

• In the regime where $\epsilon \ll K^{-4}$, this rate is asymptotically faster than K/ϵ^2 .

 $*$ Given access to a weighted ERM oracle for $\mathcal H$

 $\log |\mathscr{H}|$ can be replaced by d for classes of finite Natarajan dimension *d*

Theorem: There is an efficient* algorithm which satisfies the (ϵ, δ) -PAC guarantee for bandit multiclass classification using a sample complexity of

 \widetilde{O} $O(N^9 +$

- In the regime where $\epsilon \ll K^{-4}$, this rate is asymptotically faster than K/ϵ^2 .
- Nearly matches the *full-information* rate of $1/e²!$

* Given access to a weighted ERM oracle for $\mathcal H$

 $\log |\mathscr{H}|$ can be replaced by d for classes of finite Natarajan dimension *d*

Our algorithm operates in two phases:

Our algorithm operates in two phases:

 $\bm{\textsf{Phase 1:}}$ Predict using $\ \approx K^9$ random labels and compute an exploration distribution $\hat{P} \in \Delta_{\mathscr{H}}$ satisfying:

Our algorithm operates in two phases:

 $\bm{\textsf{Phase 1:}}$ Predict using $\ \approx K^9$ random labels and compute an exploration distribution $\hat{P} \in \Delta_{\mathscr{H}}$ satisfying:

(*x*,*y*)[∼] [

-
- ${h(x) = y}$ $\left[\frac{W_{X,Y}^{\gamma}(\hat{P})}{W_{X,Y}^{\gamma}(\hat{P})}\right] \leq C \quad \forall h \in \mathcal{H},$

Our algorithm operates in two phases:

 $\bm{\textsf{Phase 1:}}$ Predict using $\ \approx K^9$ random labels and compute an exploration distribution $\hat{P} \in \Delta_{\mathscr{H}}$ satisfying:

 $W^\gamma_{x,y}(\hat{P}) := (1-\gamma)\,\sum\,\hat{P}(h) \mathbb{I}\{h(x)=y\} + \gamma/K$, and C is an absolute constant and $\gamma>0$ is a parameter. *h*∈ℋ

(*x*,*y*)[∼] [

$$
\frac{\{h(x) = y\}}{W_{x,y}^{\gamma}(\hat{P})}\bigg] \leq C \quad \forall h \in \mathcal{H},
$$

Our algorithm operates in two phases:

 $\bm{\textsf{Phase 1:}}$ Predict using $\ \approx K^9$ random labels and compute an exploration distribution $\hat{P} \in \Delta_{\mathscr{H}}$ satisfying:

(*x*,*y*)[∼] [

$$
\frac{\{h(x) = y\}}{W_{x,y}^{\gamma}(\hat{P})}\bigg] \leq C \quad \forall h \in \mathcal{H},
$$

where $W^\gamma_{x,y}(\hat{P}):=(1-\gamma)\,\sum \hat{P}(h) \mathbb{I}\{h(x)=y\}+\gamma/K$, and C is an absolute constant and $\gamma>0$ is a parameter.

where
$$
W_{x,y}^{\gamma}(\hat{P}) := (1 - \gamma) \sum_{h \in \mathcal{H}} \hat{P}(h) \mathbb{I} \{h(x) = y\} + \gamma
$$

(**Intuition:** Importance weighted reward estimator induced by P has variance bounded by C .)

Our algorithm operates in two phases:

 $\bm{\textsf{Phase 1:}}$ Predict using $\ \approx K^9$ random labels and compute an exploration distribution $\hat{P} \in \Delta_{\mathscr{H}}$ satisfying:

(*x*,*y*)[∼] [

$$
\frac{\{h(x) = y\}}{W_{x,y}^{\gamma}(\hat{P})}\bigg] \leq C \quad \forall h \in \mathcal{H},
$$

where
$$
W_{x,y}^{\gamma}(\hat{P}) := (1 - \gamma) \sum_{h \in \mathcal{H}} \hat{P}(h) \mathbb{I} \{h(x) = y\} + \gamma
$$

(**Intuition:** Importance weighted reward estimator induced by P has variance bounded by C .)

Achieved via stochastic Frank-Wolfe optimization procedure

where $W^\gamma_{x,y}(\hat{P}):=(1-\gamma)\,\sum \hat{P}(h) \mathbb{I}\{h(x)=y\}+\gamma/K$, and C is an absolute constant and $\gamma>0$ is a parameter.

Our algorithm operates in two phases:

 $\bm{\textsf{Phase 1:}}$ Predict using $\ \approx K^9$ random labels and compute an exploration distribution $\hat{P} \in \Delta_{\mathscr{H}}$ satisfying:

 $W^\gamma_{x,y}(\hat{P}) := (1-\gamma)\,\sum\,\hat{P}(h) \mathbb{I}\{h(x)=y\} + \gamma/K$, and C is an absolute constant and $\gamma>0$ is a parameter. *h*∈ℋ

(**Intuition:** Importance weighted reward estimator induced by P has variance bounded by C .)

Phase 2: Sample $\approx 1/\epsilon^2$ hypotheses from \hat{P} and output the hypothesis with highest estimated reward.

 ${h(x) = y}$ $\left[\frac{W_{X,Y}^{\gamma}(\hat{P})}{W_{X,Y}^{\gamma}(\hat{P})}\right] \leq C \quad \forall h \in \mathcal{H},$

(*x*,*y*)[∼] [

Achieved via stochastic Frank-Wolfe optimization procedure

Our algorithm operates in two phases:

 $\bm{\textsf{Phase 1:}}$ Predict using $\ \approx K^9$ random labels and compute an exploration distribution $\hat{P} \in \Delta_{\mathscr{H}}$ satisfying:

(*x*,*y*)[∼] [

where
$$
W_{x,y}^{\gamma}(\hat{P}) := (1 - \gamma) \sum_{h \in \mathcal{H}} \hat{P}(h) \mathbb{I} \{h(x) = y\} + \gamma
$$

(**Intuition:** Importance weighted reward estimator induced by P has variance bounded by C .)

Phase 2: Sample $\approx 1/\epsilon^2$ hypotheses from \hat{P} and output the hypothesis with highest estimated reward.

(**Intuition:** Bernstein's inequality guarantees that $\approx 1/\epsilon^2$ samples suffice in order to uniformly estimates the rewards for all hypotheses in $\mathscr{H}.$)

 ${h(x) = y}$ $\left[\frac{W_{X,Y}^{\gamma}(\hat{P})}{W_{X,Y}^{\gamma}(\hat{P})}\right] \leq C \quad \forall h \in \mathcal{H},$

Achieved via stochastic Frank-Wolfe optimization procedure

where $W^\gamma_{x,y}(\hat{P}):=(1-\gamma)\,\sum \hat{P}(h) \mathbb{I}\{h(x)=y\}+\gamma/K$, and C is an absolute constant and $\gamma>0$ is a parameter.

Thank You!