Fast Rates for Bandit PAC Multiclass Classification

European Research Council

Established by the European Commission

Liad Erez

Joint work with: Alon Cohen, Tomer Koren, Yishay Mansour, Shay Moran

Blavatnik School of Computer Science Raymond & Beverly Sackler Faculty of Exact Sciences Tel Aviv University

Lemon?

Lemon?

For i = 1, 2, 3, ...:

For i = 1, 2, 3, ...:

• Environment generates $(x_i, y_i) \sim \mathcal{D}$, x_i is revealed to the learner;

For i = 1, 2, 3, ...:

- Environment generates $(x_i, y_i) \sim \mathcal{D}$, x_i is revealed to the learner;
- Learner predicts $\hat{y}_i \in \mathcal{Y}$;

- Environment generates $(x_i, y_i) \sim \mathcal{D}$, x_i is revealed to the learner;
- Learner predicts $\hat{y}_i \in \mathcal{Y}$;
- Learner observes whether or not prediction \hat{y}_i is correct, namely $\mathbf{1}{\{\hat{y}_i = y_i\}}$ (bandit feedback).

Domain \mathscr{X} , label space \mathscr{Y} with $|\mathscr{Y}| = K$, hypothesis class $\mathscr{H} \subseteq \{\mathscr{X} \to \mathscr{Y}\}$, (unknown) distribution \mathscr{D} over $\mathscr{X} \times \mathscr{Y}$. For i = 1, 2, 3, ...:

- Environment generates $(x_i, y_i) \sim \mathcal{D}$, x_i is revealed to the learner;
- Learner predicts $\hat{y}_i \in \mathcal{Y}$;
- Learner observes whether or not prediction \hat{y}_i is correct, namely $\mathbf{1}{\{\hat{y}_i = y_i\}}$ (bandit feedback).

Objective (PAC learning): Given $\epsilon, \delta > 0$, learn $\hat{h} \in \mathcal{H}$ such that w.p. at least $1 - \delta$:

Domain \mathscr{X} , label space \mathscr{Y} with $|\mathscr{Y}| = K$, hypothesis class $\mathscr{H} \subseteq \{\mathscr{X} \to \mathscr{Y}\}$, (unknown) distribution \mathscr{D} over $\mathscr{X} \times \mathscr{Y}$. For i = 1, 2, 3, ...:

- Environment generates $(x_i, y_i) \sim \mathcal{D}$, x_i is revealed to the learner;
- Learner predicts $\hat{y}_i \in \mathcal{Y}_i$;
- Learner observes whether or not prediction \hat{y}_i is correct, namely $\mathbf{1}{\{\hat{y}_i = y_i\}}$ (bandit feedback).

<u>Objective (PAC learning)</u>: Given $\epsilon, \delta > 0$, learn $\hat{h} \in \mathcal{H}$ such that w.p. at least $1 - \delta$: $L_{\mathcal{D}}(\hat{h}) - L_{\mathcal{D}}(h) \leq \epsilon \quad \forall h \in \mathcal{H},$

Domain \mathscr{X} , label space \mathscr{Y} with $|\mathscr{Y}| = K$, hypothesis class $\mathscr{H} \subseteq \{\mathscr{X} \to \mathscr{Y}\}$, (unknown) distribution \mathscr{D} over $\mathscr{X} \times \mathscr{Y}$. For i = 1, 2, 3, ...:

- Environment generates $(x_i, y_i) \sim \mathcal{D}$, x_i is revealed to the learner;
- Learner predicts $\hat{y}_i \in \mathcal{Y}_i$;
- Learner observes whether or not prediction \hat{y}_i is correct, namely $\mathbf{1}{\{\hat{y}_i = y_i\}}$ (bandit feedback).

<u>Objective (PAC learning)</u>: Given $\epsilon, \delta > 0$, learn $\hat{h} \in \mathcal{H}$ such that w.p. at least $1 - \delta$: $L_{\odot}(\hat{h}) - L_{\odot}(h) \leq \epsilon \quad \forall h \in \mathcal{H},$

where $L_{\mathscr{D}}(h) := \Pr_{(x,y)\sim \mathscr{D}} [h(x) \neq y]$ is the zero-one population loss of h.

Domain \mathscr{X} , label space \mathscr{Y} with $|\mathscr{Y}| = K$, hypothesis class $\mathscr{H} \subseteq \{\mathscr{X} \to \mathscr{Y}\}$, (unknown) distribution \mathscr{D} over $\mathscr{X} \times \mathscr{Y}$. For i = 1, 2, 3, ...:

- Environment generates $(x_i, y_i) \sim \mathcal{D}$, x_i is revealed to the learner;
- Learner predicts $\hat{y}_i \in \mathcal{Y}_i$;
- Learner observes whether or not prediction \hat{y}_i is correct, namely $\mathbf{1}{\{\hat{y}_i = y_i\}}$ (bandit feedback).

<u>Objective (PAC learning)</u>: Given $\epsilon, \delta > 0$, learn $\hat{h} \in \mathcal{H}$ such that w.p. at least $1 - \delta$: $L_{\odot}(\hat{h}) - L_{\odot}(h) \leq \epsilon \quad \forall h \in \mathcal{H},$

where $L_{\mathscr{D}}(h) := \Pr_{(x,y)\sim \mathscr{D}} [h(x) \neq y]$ is the zero-one population loss of h.

Performance is measured by sample complexity: # of samples required for PAC guarantee.

estimating the expected rewards of all hypotheses in \mathcal{H} .

• A naive approach allows for a sample complexity of $\widetilde{O}(K/\epsilon^2)^*$ by sampling labels at random and

estimating the expected rewards of all hypotheses in \mathcal{H} .

* Here and henceforth we omit $\log(|\mathcal{H}|/\delta)$ factors

• A naive approach allows for a sample complexity of $\widetilde{O}(K/\epsilon^2)^*$ by sampling labels at random and

- estimating the expected rewards of all hypotheses in \mathcal{H} .
- Agrawal et al. '14) with regret bounds of $\widetilde{O}\left(\sqrt{KT}\right)$ for contextual bandits.

• A naive approach allows for a sample complexity of $\widetilde{O}(K/\epsilon^2)^*$ by sampling labels at random and

Such rates can be obtained while also minimizing regret using efficient algorithms (e.g. Dudik et al. '11,

- estimating the expected rewards of all hypotheses in \mathcal{H} .
- ulletAgrawal et al. '14) with regret bounds of $\widetilde{O}\left(\sqrt{KT}\right)$ for contextual bandits.
- lacksquare

• A naive approach allows for a sample complexity of $\widetilde{O}(K/\epsilon^2)^*$ by sampling labels at random and

Such rates can be obtained while also minimizing regret using efficient algorithms (e.g. Dudik et al. '11,

Bandit multiclass classification is a case of contextual bandits with sparse rewards. Despite sparsity, the optimal regret for bandit multi class classification is lower bounded by $\Omega(\sqrt{KT})$ (Erez et al. '24).

- estimating the expected rewards of all hypotheses in \mathcal{H} .
- \bullet Agrawal et al. '14) with regret bounds of $\widetilde{O}\left(\sqrt{KT}\right)$ for contextual bandits.
- lacksquare

• A naive approach allows for a sample complexity of $\widetilde{O}(K/\epsilon^2)^*$ by sampling labels at random and

Such rates can be obtained while also minimizing regret using efficient algorithms (e.g. Dudik et al. '11,

Bandit multiclass classification is a case of contextual bandits with sparse rewards. Despite sparsity, the optimal regret for bandit multi class classification is lower bounded by $\Omega(\sqrt{KT})$ (Erez et al. '24).

Question: Is it possible to guarantee rates faster than K/ϵ^2 for

bandit PAC multiclass classification using an efficient algorithm?

<u>Theorem</u>: There is an efficient^{*} algorithm which satisfies the (ϵ, δ) -PAC guarantee for bandit multiclass classification using a sample complexity of

<u>Theorem</u>: There is an efficient^{*} algorithm which satisfies the (ϵ, δ) -PAC guarantee for bandit multiclass classification using a sample complexity of

* Given access to a weighted ERM oracle for ${\mathscr H}$

<u>Theorem</u>: There is an efficient^{*} algorithm which satisfies the (ϵ, δ) -PAC guarantee for bandit multiclass classification using a sample complexity of

 $\widetilde{O}\left(\left(K^9+\right.\right.\right)$

* Given access to a weighted ERM oracle for ${\mathscr H}$

$$\left(\frac{1}{\epsilon^2}\right)\log\left(\frac{|\mathcal{H}|}{\delta}\right)$$

<u>Theorem</u>: There is an efficient^{*} algorithm which satisfies the (ϵ, δ) -PAC guarantee for bandit multiclass classification using a sample complexity of

* Given access to a weighted ERM oracle for \mathcal{H}

 $\log |\mathcal{H}|$ can be replaced by dfor classes of finite Natarajan dimension d

<u>Theorem</u>: There is an efficient^{*} algorithm which satisfies the (ϵ, δ) -PAC guarantee for bandit multiclass classification using a sample complexity of

In the regime where $\epsilon \ll K^{-4}$, this rate is asymptotically faster than K/ϵ^2 . ullet

* Given access to a weighted ERM oracle for \mathscr{H}

 $\log |\mathcal{H}|$ can be replaced by dfor classes of finite Natarajan dimension d

<u>Theorem</u>: There is an efficient^{*} algorithm which satisfies the (ϵ, δ) -PAC guarantee for bandit multiclass classification using a sample complexity of

 $\widetilde{O}\left(\left(K^9 + \frac{1}{\epsilon^2}\right)\log\frac{|\mathcal{H}|}{\delta}\right)$

- In the regime where $\epsilon \ll K^{-4}$, this rate is asymptotically faster than K/ϵ^2 . •
- Nearly matches the *full-information* rate of $1/\epsilon^2$!

* Given access to a weighted ERM oracle for ${\mathscr H}$

 $\log |\mathcal{H}|$ can be replaced by dfor classes of finite Natarajan dimension d

Our algorithm operates in two phases:

Our algorithm operates in two phases:

Phase 1: Predict using $\approx K^9$ random labels and compute an exploration distribution $\hat{P} \in \Delta_{\mathscr{H}}$ satisfying:

Our algorithm operates in two phases:

<u>Phase 1</u>: Predict using $\approx K^9$ random labels and compute an exploration distribution $\hat{P} \in \Delta_{\mathscr{H}}$ satisfying:

- $\mathbb{E}_{(x,y)\sim\mathcal{D}} \quad \frac{\mathbb{I}\{h(x) = y\}}{W_{x,y}^{\gamma}(\hat{P})} \quad \leq C \quad \forall h \in \mathcal{H},$

Our algorithm operates in two phases:

<u>Phase 1</u>: Predict using $\approx K^9$ random labels and compute an exploration distribution $\hat{P} \in \Delta_{\mathscr{H}}$ satisfying:

where $W_{x,y}^{\gamma}(\hat{P}) := (1 - \gamma) \sum \hat{P}(h) [\{h(x) = y\} + \gamma/K]$, and *C* is an absolute constant and $\gamma > 0$ is a parameter. $h \in \mathcal{H}$

$$\mathbb{E}_{(x,y)\sim \mathcal{D}} \left[\frac{\mathbb{I}\{h(x) = y\}}{W_{x,y}^{\gamma}(\hat{P})} \right] \leq C \quad \forall h \in \mathcal{H},$$

Our algorithm operates in two phases:

<u>Phase 1</u>: Predict using $\approx K^9$ random labels and compute an exploration distribution $\hat{P} \in \Delta_{\mathscr{H}}$ satisfying:

where
$$W_{x,y}^{\gamma}(\hat{P}) := (1 - \gamma) \sum_{h \in \mathscr{H}} \hat{P}(h) \mathbb{I}\{h(x) = y\} + \gamma$$

(Intuition: Importance weighted reward estimator induced by \hat{P} has variance bounded by C.)

$$\mathbb{E}_{(x,y)\sim \mathcal{D}} \left[\frac{\mathbb{I}\{h(x) = y\}}{W_{x,y}^{\gamma}(\hat{P})} \right] \leq C \quad \forall h \in \mathcal{H},$$

Our algorithm operates in two phases:

<u>Phase 1</u>: Predict using $\approx K^9$ random labels and compute an exploration distribution $\hat{P} \in \Delta_{\mathscr{H}}$ satisfying:

where
$$W_{x,y}^{\gamma}(\hat{P}) := (1 - \gamma) \sum_{h \in \mathscr{H}} \hat{P}(h) \mathbb{I}\{h(x) = y\} + \gamma$$

(Intuition: Importance weighted reward estimator induced by \hat{P} has variance bounded by C.)

$$\mathbb{E}_{(x,y)\sim \mathcal{D}} \left[\frac{\mathbb{I}\{h(x) = y\}}{W_{x,y}^{\gamma}(\hat{P})} \right] \leq C \quad \forall h \in \mathcal{H},$$

Achieved via stochastic Frank-Wolfe optimization procedure

Our algorithm operates in two phases:

<u>Phase 1</u>: Predict using $\approx K^9$ random labels and compute an exploration distribution $\hat{P} \in \Delta_{\mathscr{H}}$ satisfying:

where
$$W_{x,y}^{\gamma}(\hat{P}) := (1 - \gamma) \sum_{h \in \mathscr{H}} \hat{P}(h) \mathbb{I}\{h(x) = y\} + \gamma$$

(Intuition: Importance weighted reward estimator induced by \hat{P} has variance bounded by C.)

Phase 2: Sample $\approx 1/\epsilon^2$ hypotheses from \hat{P} and output the hypothesis with highest estimated reward.

$$\mathbb{E}_{(x,y)\sim \mathcal{D}} \left[\frac{\mathbb{I}\{h(x) = y\}}{W_{x,y}^{\gamma}(\hat{P})} \right] \leq C \quad \forall h \in \mathcal{H},$$

Achieved via stochastic Frank-Wolfe optimization procedure

Our algorithm operates in two phases:

<u>Phase 1</u>: Predict using $\approx K^9$ random labels and compute an exploration distribution $\hat{P} \in \Delta_{\mathscr{H}}$ satisfying:

where
$$W_{x,y}^{\gamma}(\hat{P}) := (1 - \gamma) \sum_{h \in \mathscr{H}} \hat{P}(h) \mathbb{I}\{h(x) = y\} + \gamma$$

(Intuition: Importance weighted reward estimator induced by \hat{P} has variance bounded by C.)

<u>Phase 2</u>: Sample $\approx 1/\epsilon^2$ hypotheses from \hat{P} and output the hypothesis with highest estimated reward.

(Intuition: Bernstein's inequality guarantees that $\approx 1/\epsilon^2$ samples suffice in order to uniformly estimates the rewards for all hypotheses in \mathcal{H} .)

$$\mathbb{E}_{(x,y)\sim \mathcal{D}} \left[\frac{\mathbb{I}\{h(x) = y\}}{W_{x,y}^{\gamma}(\hat{P})} \right] \leq C \quad \forall h \in \mathcal{H},$$

Achieved via stochastic Frank-Wolfe optimization procedure

Thank You!