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● Due to their training objective, SD-Inpaint [1] struggles with object removal
● Hallucinates rather than removing the object
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● Existing approaches rely on 
fine-tuning SD with synthetic 
datasets

● Alters the model’s generation 
capability

SD-Inpaint has built-in capacity for 
object removal, no need for additional 
training.
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● SD-Inpaint correctly fill the intended region with the given prompt
● What if the prompt is the background?



● IP-Adapter [4] and AlphaCLIP [5] have different CLIP [6] spaces (Vit-H and Vit-L14)
● An MLP is trained to bridge such domain shift

[4] Ye, H., Zhang, J., Liu, S., Han, X., Yang, W.: Ip-adapter: Text compatible image prompt adapter for text-to-image diffusion models. arXiv preprint arXiv:2308.06721 (2023)
[5] Sun, Z., Fang, Y., Wu, T., Zhang, P., Zang, Y., Kong, S., Xiong, Y., Lin, D., Wang, J.: Alpha-clip: A clip model focusing on wherever you want. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2024)
[6] Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transferable visual models from natural language supervision. In: Meila, M., Zhang, T. (eds.) 
Proceedings of the 38th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 139, pp. 8748–8763. PMLR (18–24 Jul 2021)













                        Image               Mask             Fg-Focused        Bg-Focused        Projected 



● Evaluated on COCO2017 [7] validation split
● FID [8], KID [9], CMMD [10] measures photorealism 
● CLIP Dist, CLIP@1, CLIP@3, CLIP@5 measure object removal ability
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● FID only measures photorealism
● CLIP score only measures object 

removal ability
● A good model should perform good in 

both





● Using a simple arithmetic in CLIP’s image embedding space, CLIPAway removes 
objects better than their competitors

● Stable Diffusion possesses a built-in capacity for object removal, and there is no 
need for additional training


