

Language Models as Zero-shot Lossless Gradient Compressors: Towards General Neural Parameter Prior Models

Hui-Po Wang

Mario Fritz

CISPA Helmholtz Center for Information Security, Germany

Presented @ NeurIPS 2024

- Statistical prior models have been widely used in many applications
 Such as image super-resolution and signal denoising
- They have been missing from gradients for a long time because:
 - High-dimensional and complex structures within gradients
 - Generalizability

- We showcase that Large Language Models (LLMs) can potentially serve as gradient priors even in a zero-shot setting
- We verify the property via lossless gradient compression

 $P_{\rm LLM}(\boldsymbol{g}) \approx P(\boldsymbol{g}) \rightarrow \text{compression efficiency} \uparrow$

- Our approach LM-GC:
 - Convert floating-point gradients into text-like formats, retaining all information and optimizing token efficiency.
 - Leverage large LLMs as priors to achieve up to 17.2% improvement over state-of-the-art methods in compressing gradients
 - Showcase the potential of LLMs to interpret data modalities that are not fully understandable to humans.

- Our approach consists of three steps:
 - (1) serialization
 - (2) Inference
 - (3) arithmetic coding

 Goal: convert floating-point gradients into <u>hexadecimal</u> numbers that LLMs know while retaining all information

32 Bits (IEEE 754)

• **Goal:** Feed serialized data into a pre-trained LLM pipeline to predict the next-token probability:

$$P_{\mathrm{LM}}(\mathcal{T}) := \prod_{k=1}^{K} p(t_k | \mathrm{BOS}, t_{< k})$$

• **Goal:** conduct the actual arithmetic coding using the probability predicted from the previous step

$$P_{\mathrm{LM}}(\mathcal{T}) := \prod_{k=1}^{K} p(t_k | \mathrm{BOS}, t_{< k})$$

- Note: the probability is used to partition the intervals

- Compare LM-GC to SOTA methods using 3 off-the-shelf language models
- LM-GC surpasses the SOTA by up to 17.2%, highlighting the potential of LLMs to serve as effective gradient priors.
- Metric:

Compression Rate (%) = $100 \times$	Compressed Data Size		
	Original Data Size		

	Tradition	al codec	LM-GC (Ours)						
	Unchunked	Chunked	ISO	H_n	H_s	H_c	H_{c+s}	H _{semi}	
PNG	43.30±1.3	49.18±1.1							
FLAC	52.37±0.6	50.46 ± 0.6							
GZIP	42.42±0.3	47.10 ± 0.4							
LZMA	41.91±0.0	47.36±0.1							
FPZIP	41.26 ± 0.8	$49.27{\pm}0.3$							
Tinyllama 1.1B			117.38±0.0	36.30±0.8	38.83±0.4	38.40±0.6	38.46±0.1	43.45±0.6	
Openllama 3B			71.85 ± 0.2	37.07±0.1	32.32±0.3	34.31±0.6	33.07 ± 0.5	33.57±0.2	
LLAMA 2 7B			109.07 ± 0.2	72.10±0.5	<u>32.26±0.5</u>	32.96 ± 0.3	32.21±0.8	32.78±0.4	

• Compress gradients collected from 4 architectures trained on 3 datasets

	Traditional codec				Ours (Tinyllama 1.1B)				
	PNG	FLAC	GZIP	LZMA	FPZIP	H _n	H_s	H_c	H_{c+s}
ConvNet	43.30±1.3	52.37±0.6	42.42±0.3	41.91±0.0	41.26±0.75	36.30±0.8	38.83±0.4	38.40±0.6	38.46±0.1
VGG16	95.61±0.2	-	91.91±0.0	91.27 ± 0.1	89.15±0.17	83.23±0.0	73.42±0.1	75.32 ± 0.2	73.97±0.1
ResNet18	97.22±0.1	-	92.47±0.0	91.72±0.1	90.72 ± 0.07	83.20±0.3	73.57±0.1	75.55±0.3	73.95±0.2
ViT	94.50±0.4	-	89.20±1.2	87.98±1.2	89.77±0.48	78.65±3.3	70.83±1.8	72.60 ± 2.0	71.62±1.7

Table 2: Gradient compression (%) for convolution neural networks (ConvNet), VGG-16, ResNet-18, and ViT trained on CIFAR-10.

		Tra					
	PNG	FLAC	GZIP	LZMA	FPZIP	LM-GC (H_s)	Impr.
MNIST	50.05±4.3	55.20±1.7	45.05±5.2	43.19±1.3	44.62±0.6	39.38±1.4	8.8%
CIFAR-10	43.30±1.3	52.37±0.6	42.42±0.3	41.91±0.0	41.26±0.8	38.83±0.4	5.9%
TinyImageNet	96.08±0.1	107.36±0.0	92.18±0.0	91.06±0.1	86.88 ± 0.1	71.90±0.0	17.2%

Table 3: Compression effectiveness on MNIST, CIFAR-10, and TinyImageNet datasets.

- Check our project page for more details!
- https://github.com/hui-po-wang/LM-GC

