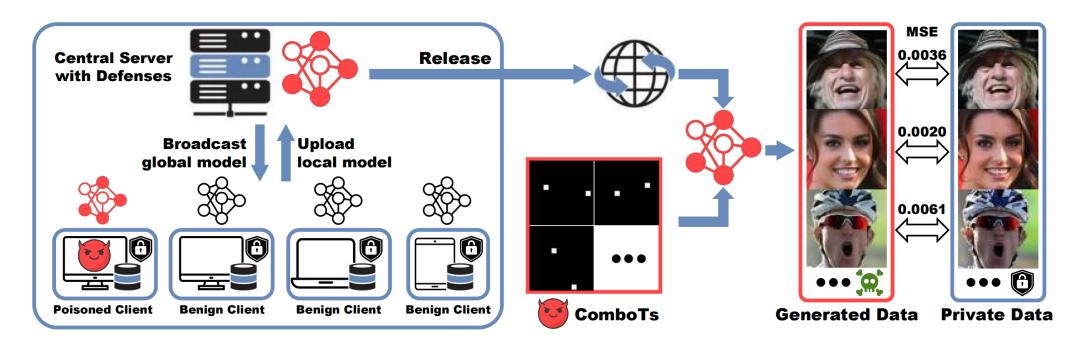


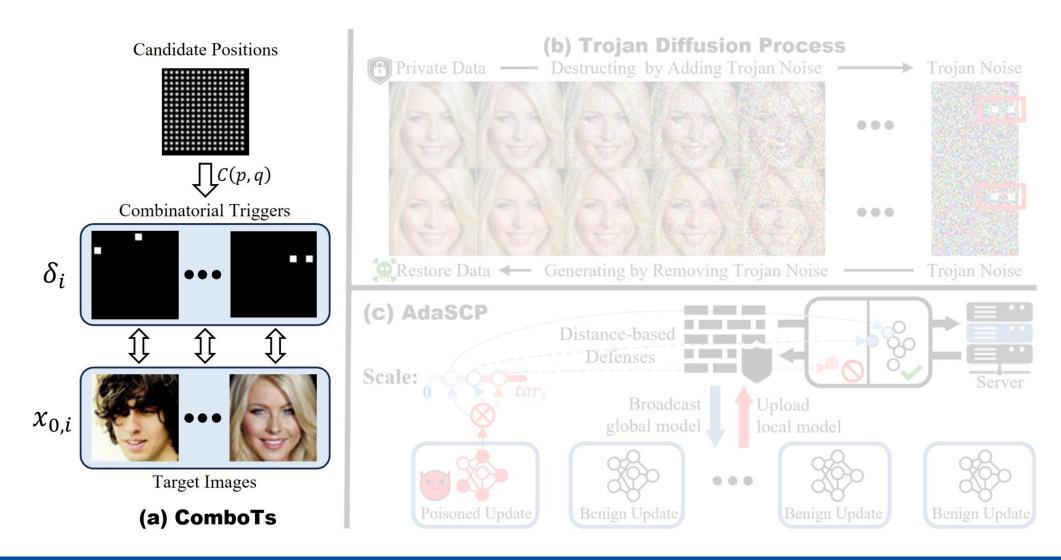
DataStealing: Steal Data from Diffusion Models in Federated Learning with Multiple Trojans

Yuan Gan¹

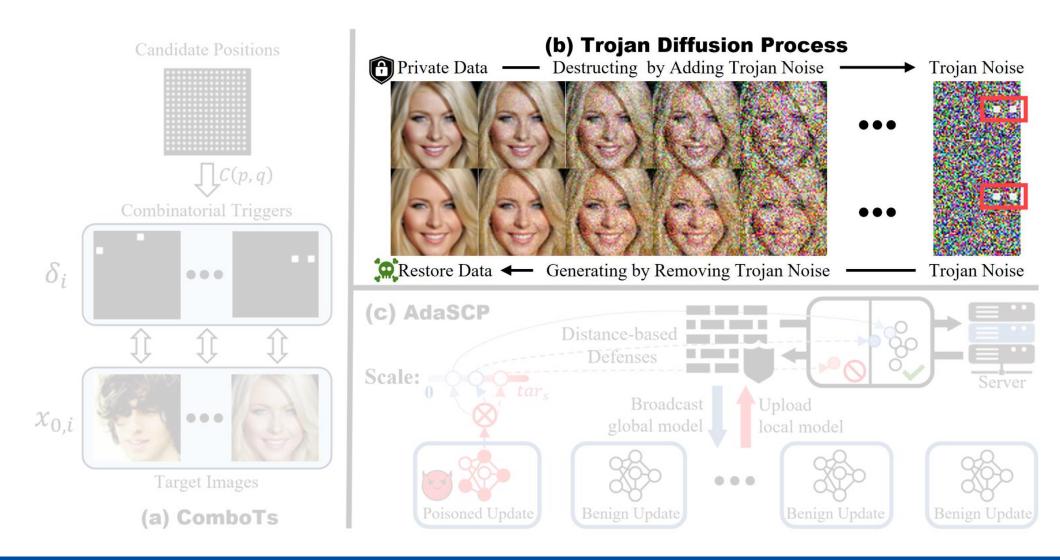

Jiaxu Miao^{2*}

Yi Yang ¹

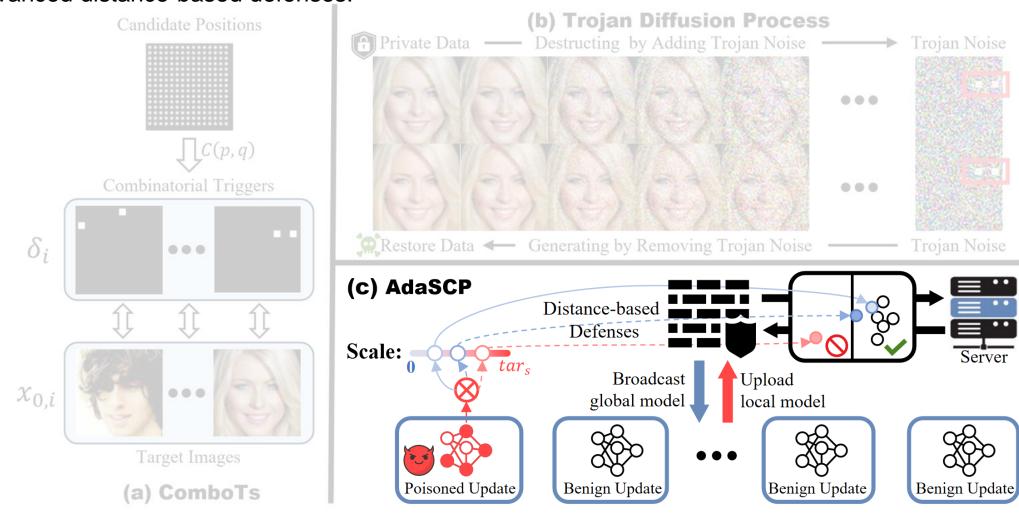
¹ ReLER, CCAI Zhejiang University ²School of Cyber Science and Technology Sun Yat-sen University


Motivation

- Previous Work
 - O FL may leak small amounts of local data in low-quality via gradient inversion.
 - O Trojan attacks on diffusion models enable high-quality image stealing with specific trigger.
- How to steal thousands of high-quality private data?
 - O **ComboTs**: select multiple triggers to embed backdoors.
 - O AdaSCP: Adaptive Scale Critical Parameters is used to circumvent advanced defenses.


Method

ComboTs choose two points from candidate positions to form multiple triggers for mapping target images.


Method

After training with ComboTs, the poisoned model can restore target images in high quality from Trojan noise.

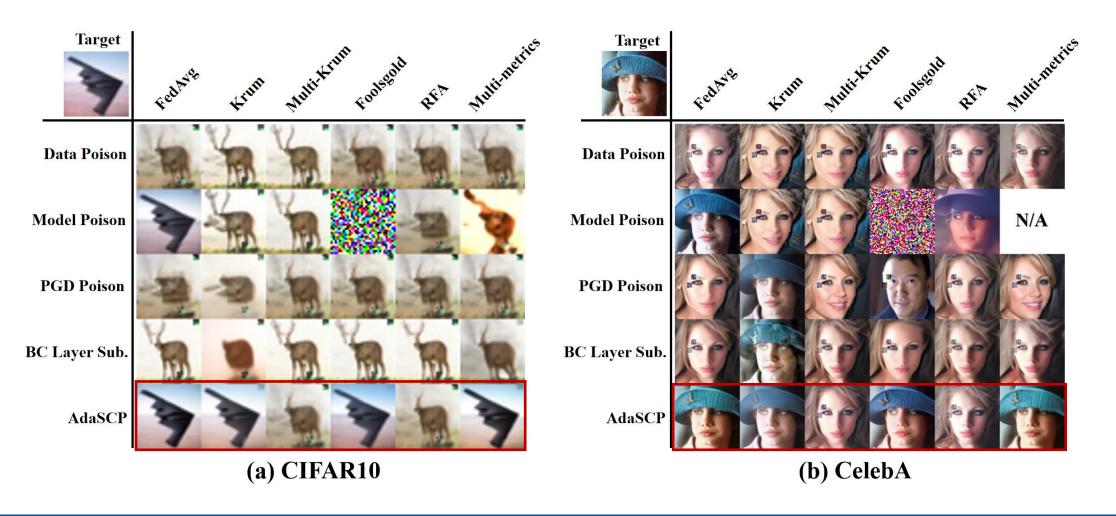
Method

 AdaSCP enables DataStealing by training critical parameters and adaptively scaling updates to bypass advanced distance-based defenses.

Result

- Achieves lowest MSE across advanced defenses by adaptively scaling critical updates.
- Other methods either fail to evade detection or lead to model collapse.

,	(
	(1	
	(J	
	(Į	
•	:		
	(Į,	
(1
_	_	_	
	_)
=			
		Ī	
	(
	(
-	_	7	,
4	_	-	


Dataset	<u>Defenses</u> Attacks	FedAvg 37	Krum [2]	Multi-Krum [2]	Foolsgold [17]	RFA [44]	Multi-metrics 24	Mean
		FID ↓ / MSE ↓	\mid FID \downarrow / MSE \downarrow \mid	FID \downarrow / MSE \downarrow	\mid FID \downarrow / MSE \downarrow	\mid FID \downarrow / MSE \downarrow	FID↓/MSE↓	
CIFAR10	Data Poison 20	6.87/0.1226	10.09/0.1480	6.20/0.1427	7.70/0.1238	6.72/0.1241	7.09/ 0.1213	7.45/0.1304
	Model Poison [1]	12.86/ 0.0069	8.29/0.1454	6.23/0.1426	459.64/0.3124	6.12/ 0.1194	70.98/0.1685	94.02/0.1492
	PGD Poison 53	6.86/0.1232	19.98/ 0.1239	6.93/ 0.1221	7.45/0.1243	6.85/ 0.1231	6.78/0.1228	9.14/ 0.1232
	BC Layer Sub. [69]	5.75/0.1382	132.02/0.1719	6.03/0.1433	6.67/0.1388	5.64/0.1488	6.69/0.1233	27.13/0.1441
	AdaSCP (Ours)	12.93/ 0.0117	30.68/ 0.0861	8.23/ 0.1271	24.21/ 0.0129	8.22/0.1233	15.04/ 0.0328	16.55/ 0.0657
CelebA	Data Poison [20]	5.91/0.1304	7.64/0.1520	6.13/0.1506	6.22/0.1441	5.74/0.1212	6.65/0.0922	6.38/0.1317
	Model Poison [1]	16.05/ 0.0465	7.95/0.1524	6.16/0.1504	446.81/0.3161	5.49/ 0.0858	N/A	96.49/0.1502*
	PGD Poison 53	8.16/0.1516	7.01/ 0.0462	8.04/0.1435	6.49/0.1636	8.02/0.1263	7.44/0.1362	7.53/0.1279
	BC Layer Sub. [69]	12.29/0.1328	76.49/0.0536	15.63/ 0.1204	10.40/ 0.1417	18.36/0.1159	17.08/0.1177	25.04/ 0.1137
	AdaSCP (Ours)	7.00/ 0.0082	13.66/ 0.0367	4.55/ 0.1312	7.36/ 0.0103	6.20/ 0.1029	7.62/ 0.0104	7.73/ 0.0499
LSUN Bedroom	Data Poison [20]	23.50/0.0969	12.28/0.2512	25.31/ 0.1169	23.47/0.1321	23.45/0.0947	22.44/0.0862	21.74/ 0.1297
	Model Poison [1]	33.20/ 0.0723	11.97/0.2557	13.31/0.2539	404.92/0.2529	21.80/0.0894	174.83/0.3135	110.00/0.2063
	PGD Poison 53	23.49/0.0976	11.95/0.2546	39.93/0.1476	16.31/ 0.1282	23.68/0.0959	21.27/0.0966	22.77/0.1368
	BC Layer Sub. 69	10.84/0.1392	45.77/ 0.1157	12.29/0.1391	15.41/0.1361	13.90/0.1313	13.05/0.1354	18.54/0.1328
	AdaSCP (Ours)	22.30/ 0.0544	51.15/ 0.1634	25.81/ 0.1131	28.50/ 0.0554	24.36/0.1162	22.28/ 0.0623	29.07/ 0.0941

Datase

Dataset	<u>Defenses</u> Attacks	FedAvg 37 Multi-Krum 2		Foolsgold 17 RFA 44		Multi-metrics 24	Mean
		$\overline{\text{FID}\downarrow/\text{MSE}\downarrow}$	FID↓/MSE↓	FID \ / MSE \	FID↓/MSE↓	FID ↓ / MSE ↓	
CIFAR10	Data Poison [20]	6.38/0.1242	5.50/0.1435	6.39/0.1246	6.34/0.1250	5.87/0.1242	6.10/0.1283
	Model Poison [1]	8.40/ 0.0063	5.52/0.1432	456.00/0.3109	5.88/ 0.1212	10.55/ 0.0047	97.27/ 0.1173
	PGD Poison 53	6.37/0.1248	6.17/ 0.1241	6.38/0.1252	6.35/ 0.1247	5.89/0.1248	6.23/0.1247
	BC Layer Sub. 69	5.29/0.1362	5.56/0.1340	5.25/0.1262	5.61/0.1308	5.38/0.1305	5.42/0.1315
	AdaSCP (Ours)	8.59/ 0.0088	7.09/ 0.1273	12.84/ 0.0645	7.03/0.1285	8.75/ 0.0203	8.86/ 0.0699

Result

- High-fidelity reconstructions
- Stable model performance without collapse

Summary

- In summary, our contributions have three folds:
 - We explored the vulnerabilities of diffusion models within the FL framework, highlighting new avenues for privacy threats through *DataStealing* task with our proposed **ComboTs**.
 - We propose AdaSCP, to defeat advanced distance-based defenses and seamlessly incorporate multiple Trojans into the global diffusion model.
 - Extensive experiments have been conducted to assess the efficacy of **AdaSCP**. Our findings illuminate potential future risks to the security of training diffusion models in FL.

Thanks for your attention!

DataStealing: Steal Data from Diffusion Models in Federated Learning with Multiple Trojans