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Abstract

The Stackelberg prediction game (SPG) is a popular model for characterizing strategic interactions
between a learner and an adversarial data provider. Although optimization problems in SPGs
are often NP‐hard, a notable special case involving the least squares loss (SPG‐LS) has gained
significant research attention recently [1, 2, 3]. The latest state‐of‐the‐art method for solving
the SPG‐LS problem is the spherically constrained least squares reformulation (SCLS) method
proposed in the work of [3]. However, the paper [3] lacks theoretical analysis on the error of the
SCLS method, which limits its large‐scale applications. In this paper, we investigate the estimation
error between the learner obtained by the SCLS method and the actual learner. Specifically, we
reframe the estimation error of the SCLS method as a Primary Optimization (PO) problem and
utilize the Convex Gaussian min‐max theorem (CGMT) to transform the PO problem into an
Auxiliary Optimization (AO) problem. Subsequently, we provide a theoretical error analysis for
the SCLS method based on this simplified AO problem. This analysis not only strengthens the
theoretical framework of the SCLSmethod but also confirms the reliability of the learner produced
by it. We further conduct experiments to validate our theorems, and the results are in excellent
agreement with our theoretical predictions.

The Stackelberg prediction games

Stackelberg prediction games (SPGs) play prominent roles in various machine learning appli‐
cations. SPG model is often formulated as a bi‐level optimization problem, which is generally
NP‐hard even in the simplest case with linear constraints and objectives [1].

To overcome the NP‐hard nature of SPGs, [1, 2, 3] focus on a commonly used subclass of
SPGs, termed as the SPG‐LS, whose loss functions for the learner and the data provider are
least squares. Specifically, SPG‐LS has access to a set of n sample tuples denoted by S =
{(xxxi, yi, zi)}ni=1, where xxxi ∈ Rd is input data with d features, yi is the true output label of xxxi, and
zi is the label that the data provider aims to achieve. The learner of SPG‐LS aims to train a linear
predictor www ∈ Rd to best estimate the true output label yi of the fake data xxx∗

i by minimizing
the least squares loss:

www∗ = arg min
www

1
n

n∑
i=1

∥www⊤xxx∗
i − yi∥2.

Meanwhile, the data provider of SPG‐LS, with full knowledge of the learner’s predictive model
www, selects the following least squares attacking strategy (i.e., modifying the data x̂xxi) to make the
corresponding prediction www⊤xxx∗

i close to the desired label zi:

xxx∗
i = arg min

x̂xx
∥www⊤x̂xxi − zi∥2 + γ∥xxxi − x̂xxi∥2,

where γ > 0 is a regularizer to adjust the trade‐off between the deviation from the original data
xxxi and closeness to the target zi. Thus, the SPG‐LS model can be expressed as the following
bi‐level optimization problem, as described in [1, 2, 3]:

min
www

∥XXX∗www − yyy∥2, s.t.XXX∗ = arg min
X̂XX

∥X̂XXwww − zzz∥2 + γ∥X̂XX −XXX∥2
F , (1)

where XXX = (xxx1,xxx2, · · · ,xxxn)⊤ ∈ Rn×d is the input sample matrix, yyy = (y1, y2, · · · , yn)⊤ ∈ Rn
is the vector of true output labels, and zzz = (z1, z2, · · · , zn)⊤ ∈ Rn is the vector of labels that
the attacker aims to achieve. Moreover, ∥ · ∥ denotes the Euclidean norm (l2) unless otherwise
specified.

Several studies have solved the SPG‐LS (1). Recently, [3] proposes a spherically constrained
least squares reformulation (SCLS) method and demonstrates that the SCLSmethod is currently
the state‐of‐the‐art for solving SPG‐LS (1), having won the ICML 2022 Outstanding Paper
Award.

Spherically Constrained Least Squares Reformulation (SCLS) method

Specifically, expanding upon previous studies by [1, 2], [3] reformulates SPG‐LS (1) into the
following optimization.

inf
www,α

v(www, α) ≜ ∥αz
zz +XXXwww

1 + α
− yyy∥2, s.t. www⊤www = γα. (2)

Subsequently, [3] makes an assumption on the nonemptiness of the optimal solution set of
optimization (2).

Assumption 3.1 [3] Assume that the optimal solution set of (2) is nonempty.

Under Assumption 1, [3] employs a nonlinear variable transformation to recast the QFP (2) as
a spherical constrained least squares (SCLS) problem:

min
w̃ww,α̃

ṽ(w̃ww, α̃) ≜
∥∥∥α̃2zzz +

√
γ

2
XXXw̃ww − (yyy − zzz

2
)
∥∥∥2
, s.t. w̃ww⊤w̃ww + α̃2 = 1, (3)

where w̃ww and α̃ are defined in Lemmas 3.2 and 3.3.

Lemma 3.2 [3] Suppose (www, α) is a feasible solution of QFP (2). Then (w̃ww, α̃), defined as

w̃ww := 2
√
γ(α + 1)

www and α̃ := α− 1
α + 1

, (4)

is feasible to SCLS (3) and v(www, α) = ṽ(w̃ww, α̃).
Lemma 3.3 [3] Suppose (w̃ww, α̃) is feasible to SCLS (3) with α̃ ̸= 1. Then (www, α), defined as

www :=
√
γ

1 − α̃
w̃ww and α := 1 + α̃

1 − α̃
, (5)

is feasible to QFP (2) and ṽ(w̃ww, α̃) = v(www, α).
Let v∗ and ṽ∗ represent the optimal values of QFP (2) and SCLS (3), respectively. Subsequently,
[3] presents Theorem 3.4 to elucidate the relationship between the solutions of QFP (2) and
SCLS (3).

Theorem 3.4 [3] Given Assumption 1, then there exists an optimal solution (w̃ww, α̃) to SCLS (3) with
α̃ ̸= 1. Moreover, (www, α), defined by (5), is an optimal solution to (2) and v∗ = v(www, α) = ṽ(w̃ww, α̃) =
ṽ∗.

The Error Analysis for the SCLS method

We investigate the estimation error between the learner (e.t.www∗) estimated by the SCLSmethod
and the true learner (denoted as www0) to validate the reliability of www∗. Specifically, we assume
the samples S = {(xxxi, yi, zi)}ni=1 are generated by the following black box model:

XXX∗ = arg min
X̂XX

∥X̂XXwww0 − zzz∥2 + γ∥X̂XX −XXX∥2
F , yyy = XXX∗www0 + ϵϵϵ, (6)

where www0 ∈ Rd represents the “true” weight parameter of the real learner, and ϵϵϵ =
(ϵ1, ϵ2, · · · , ϵn)⊤ ∈ Rn is the noise vector. Moreover, the entries of XXX and zzz are drawn i.i.d.
from N (0, 1); the entries of ϵϵϵ are drawn i.i.d. from N (0, σ2); and we assume limn→∞ d

n ∈ (0, 1).
Given XXX , zzz, and yyy generated by this model (6), we solve SPG‐LS (1) by the SCLS method to
obtain www∗ that is used to estimate the target vector www0. Our task is to measure the optimal
estimation error of the SCLS method, represented by ∥www∗ −www0∥.
Because the sample (XXX,yyy,zzz) is generated by black box model (6), we have:

yyy = XXX∗www0 + ϵϵϵ = α0zzz +XXXwww0
1 + α0

+ ϵϵϵ, (7)

where α0 = www⊤
0 www0/γ. Taking (7) to SCLS problem (3) simplifies to:

min
β̃ββ

1
n

∥∥∥ccc⊤β̃ββzzz +XXXβ̃ββ − 2ϵϵϵ
√
γ

∥∥∥2
. (8)

where β̃ββ := w̃ww − w̃ww0, and ccc := ccc(w̃ww0, γ). The PO problem associated with (8) is:

ΦSCLS(XXX) = min
β̃ββ

max
uuu

1
n

(
uuu⊤XXXβ̃ββ + ψ(β̃ββ,uuu)

)
, (9)

where ψ(β̃ββ,uuu) := ccc⊤β̃ββ · uuu⊤zzz − 2uuu⊤ϵϵϵ√
γ − ∥uuu∥2

4 . The PO (9) can be simplified as AO using CGMT:

ϕSCLS(ggg,hhh) = min
β̃ββ

max
uuu

1
n

[
(∥β̃ββ∥ggg + ccc⊤β̃ββzzz − 2ϵϵϵ

√
γ

)⊤uuu + ∥uuu∥hhh⊤β̃ββ − ∥uuu∥2

4
]
, (10)

where the entries of ggg and hhh are drawn i.i.d. from N (0, 1). As n goes to +∞, the optimal
minimizer of AO (10) converges to the optimal minimizer of (11) in probability:

min
β̃ββ

∥β̃ββ∥2 + (ccc⊤β̃ββ)2 + Ω(β̃ββ) + 4σ2

γ
. (11)

Here, we successfully reduced the complex AO problem (10) to a more manageable determin‐
istic optimization problem (11), effectively focusing only on the estimation error variable β̃ββ.

Theorem 4.1 Suppose w̃ww0 is the true weight parameter of the original SCLS problem (3), and w̃ww∗ is
the optimal solution to the objective function of SCLS (3). If limn→∞ d

n ∈ (0, 1), the estimation error
of SCLS (3) is given by the following probability limit: limn→∞ ∥w̃ww∗ − w̃ww0∥

P−→ 0.
Theorem 4.3 Supposewww0 is the true weight parameter of the SPG‐LS (1), w̃ww∗ is the optimal solution
learned by SCLS (3), andwww∗ is the optimal solution recovered from w̃ww∗ by Theorem 1. If limn→∞ d

n ∈
(0, 1), the estimation error of SPG‐LS (1) solved by the SCLS (3) is given by the following probability
limit:

lim
n→∞

∥www∗ −www0∥
P−→ 0.

Experiments
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Figure 1. The change of ∥www∗ −www0∥ with n for SCLS method under different Sparsity k/d.
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