Error Correction Output Codes for Robust Neural Networks against Weight-errors: A Neural Tangent Kernel Point of View

Anlan Yu^{*}, Shusen Jing^{*}, Ning Lyu, Wujie Wen, Zhiyuan Yan

*Equal contribution

What's ECOC?

	One-hot labeling									
Label 0	1	0	0	0	0	0	0	0		
Label 1	0	1	0	0	0	0	0	0		
Label 2	0	0	1	0	0	0	0	0		
Label 6	0	0	0	0	0	0	1	0		
Label 7	0	0	0	0	0	0	0	1		
Minimum distance = 2										

- 1. Output i: predict the probability of the given input belongs to class i
- 2. Num output equal to num class
- 3. Code matrix as identity matrix

	ECOC labeling									
Label 0	1	1	1	1	1	1	1	1		
Label 1	1	0	1	0	1	0	1	0		
Label 2	1	1	0	0	1	1	0	0		
Label 6	1	1	0	0	0	0	1	1		
Label 7	1	0	0	1	0	1	1	0		
Minimum distance = 4										

- Output i: predict the probability of the i-th output being 1
- 2. Num output self-defined
- 3. Code matrix self-defined

ECOC: an ensemble of binary classifiers

Fundamental problems of ECOC

Lack theoretical foundations

- ⁽³⁾ Why does ECOC work?
- 😵 How good can ECOC be?
- Bow to make ECOC work better?

Efficacy of ECOC in Absence of Weight-errors

• Theoretically prove that ECOCs affect the performance of DNNs through the correlation matrix R of the code matrix

Efficacy of ECOC on the Robustness of DNNs

Conclusion:

The ratio of Hamming distance to code length is crucial for the robustness of DNNs with ECOCs.

ECOC Construction: Directly Optimize

- Weight-error free: correlation matrix R of code matrix
- **Robustness:** Hamming distance of codes

Objective function:

$$\min_{Z \in \{-1,1\}^{n_L \times C}} - \underbrace{\sum_{i \neq j} \|Z[i] - Z[j]\|^2}_{\text{pair-wise codeword distance}} + \lambda \underbrace{\left(\sum_{i \neq j} (Z[i]^T Z[j])^2 - \beta \sum_i \|Z[i]\|^2 \right)}_{\text{correlation}}.$$

Z is the ECOC codebook

ECOC Construction: Picking from Hadamard

Properties of Hadamard code:

- 1. Power of 2 code length
- Codewords orthogonal 2.
- Hamming distance half of code length 3.

Thank you

