

Background

- Large language models (LLMs) have demonstrated proficient capabilities across various tasks. They typically exhibit varying strengths and weaknesses across different tasks. Assembling multiple off-the-shelf LLMs can harness their complementary abilities, resulting in better performance than relying on a single LLM.
- Routing is a promising assembling method which learns a router to select a suitable LLM for each query. Compared with LLM ensembling, routing is much more efficient as it only needs to perform inference on the selected LLM.
- ZOOTER (NAACL, 2024) scores LLMs for each query, then minimizes Kullback-Leibler divergence between selection probability from the router and the softmax normalized score. However, when multiple LLMs perform well for a query, the normalized score tends to be uniform, which is not a strong supervision signal for learning the router.

(a): Score distributions of LLMs on an example query (w/ or w/o normalization).

(b): Distribution of the score difference between the top two LLMs.

Scoring

Consider a set of LLMs { $\mathcal{M}_t : t = 1, \ldots, T$ } and a training set $\mathcal{D}_{train} = \{(\mathbf{x}_i, y_i) : i = 1, \ldots, n\}$, where x_i is a query (i.e., question) and y_i is its answer (i.e., ground truth). We design a scoring method to assess the performance of LLMs on queries.

• For an *open-ended* generation query x_i (requiring a long answer, e.g., GSM8K), we feed it to LLM M times to generate outputs $\{\hat{y}_{im}^{(t)}: m = 1, \dots, M\}$, then define the score of LLM \mathcal{M}_t on the query x_t as:

$$s_i^{(t)} = \frac{1}{M} \sum_{m=1}^{M} \text{evaluate}(\hat{y}_{i,m}^{(t)}, y_i)$$

• For a *multiple-choice question* x_i with an option set A_i (e.g., MMLU), we define the score based on the probability of options, i.e.,

$$s_i^{(t)} = \begin{cases} \frac{\mathbb{P}_{\mathcal{M}_t}(\hat{y}_i^{(t)} | \mathbf{x}_i)}{\sum_{a \in \mathcal{A}_i} \mathbb{P}_{\mathcal{M}_t}(a | \mathbf{x}_i)} & \text{if } \hat{y}_i^{(t)} = y_i \\ 0 & \text{otherwise} \end{cases}$$

RouterDC: Query-Based Router by Dual Contrastive Learning for Assembling Large Language Models

Shuhao Chen^{1, *}, Weisen Jiang^{1, 2, *}, Baijiong Lin³, James T. Kwok², Yu Zhang^{1, †}

¹Southern University of Science and Technology ²The Hong Kong University of Science and Technology ³The Hong Kong University of Science and Technology (Guangzhou)

The proposed RouterDC consists of

- An encoder $\mathcal{E}(\mathbf{x}; \mathbf{w})$ parameterized by \mathbf{w} which maps \mathbf{x} into an embedding in \mathbb{R}^p .
- T learnable LLM embeddings $\{\mathbf{k}_t \in \mathbb{R}^p : t = 1, \dots, T\}$ for the T LLMs.

For a query x_i , RouterDC generates a selection probability distribution over T LLMs as

Dual Contrastive Loss

Sample-LLM Contrastive Loss

- Based on the score, we construct positive LLMs index set \mathcal{I}_i^+ and negative LLMs index set \mathcal{I}_i^- as:
- 1. \mathcal{I}_i^+ consists of the indices of LLMs corresponding to the top- K_+ scores.
- 2. \mathcal{I}_i^- consists of the indices of LLMs corresponding to the bottom- K_- scores with $s_i^{(l)} < 0.5$.
- We expect the router to pull the query embedding $\mathcal{E}(\mathbf{x}_i; \mathbf{w})$ closer to the positive LLMs' embeddings $\{\mathbf{k}_{t_+} : t_+ \in \mathbf{w}\}$ \mathcal{I}_i^+ while pushing apart from the negative LLMs' embeddings $\{\mathbf{k}_{t-}: t_- \in \mathcal{I}_i^-\}$.

$$\begin{split} \mathcal{L} \text{sample-LLM}(\mathbf{x}_i, y_i; \boldsymbol{\theta}) = \sum_{t_+ \in \mathcal{I}_i^+} -\log \frac{e^{\text{sim}(\mathcal{E}(\mathbf{x}_i; \mathbf{w}), \mathbf{k}_{t_+})}}{e^{\text{sim}(\mathcal{E}(\mathbf{x}_i; \mathbf{w}), \mathbf{k}_{t_+})} + \sum_{t_- \in \mathcal{I}_i^-} e^{\text{sim}(\mathcal{E}(\mathbf{x}_i; \mathbf{w}), \mathbf{k}_{t_-})}} \end{split}$$

Sample-Sample Contrastive Loss

- Minimizing the sample-LLM contrastive loss alone is not stable. Some similar queries can have dissimilar embeddings and may be routed to different LLMs.
- Training samples are grouped into N groups $\{\mathcal{K}_1, \ldots, \mathcal{K}_N\}$ by applying k-means algorithm on extracted t-SNE low-dimensional vectors. For a query $x_i \in \mathcal{K}_j$, we randomly select an in-group query $x_i^+ \in \mathcal{K}_j$ and an outgroup set $\mathcal{X}_i^- \subset \{\bigcup_{j' \neq j} \mathcal{K}_{j'}\}$ of H queries from the training mini-batch at each iteration.

$$\mathcal{L}_{\text{sample-sample}}(\mathbf{x}_i; \boldsymbol{\theta}) = -\log \frac{e^{\text{sim}(\mathcal{E}(\mathbf{x}_i; \mathbf{w}), \mathcal{E}(\mathbf{x}_i^+; \mathbf{w}))}}{e^{\text{sim}(\mathcal{E}(\mathbf{x}_i; \mathbf{w}), \mathcal{E}(\mathbf{x}_i^+; \mathbf{w}))} + \sum_{\mathbf{x}_i^- \in \mathcal{X}_i^-} e^{\text{sim}(\mathcal{E}(\mathbf{x}_i; \mathbf{w}), \mathcal{E}(\mathbf{x}_i^-; \mathbf{w}))}}$$

Training

• We learn a router $R(\mathbf{x}; \boldsymbol{\theta})$ by minimizing the final objective consisting of sample-LLM and sample-sample contrastive losses, i.e.,

$$\mathcal{L}(\mathcal{D}_{ extsf{train}}; oldsymbol{ heta}) = \sum_{(\mathbf{x}_i, y_i) \in \mathcal{D}_{ extsf{train}}} \mathcal{L}_{ extsf{sample-LLM}}(\mathbf{x}_i, y_i; oldsymbol{ heta}) +$$

• RouterDC is about $6 \times$ **faster** in inference than voting.

Table 2: Testing accuracy (%) on out-of-distribution tasks. "Time" denotes the total inference time in minutes.

 $\lambda \ \mathcal{L}_{\mathsf{sample-sample}}(\mathbf{x}_i; \boldsymbol{ heta})$

- Problem: harness the complementary abilities of LLMs.
- Propose a novel routing method RouterDC and two contrastive losses to train the router.
- Experimental results show that RouterDC effectively assembles LLMs and outperforms individual top-performing LLMs as well as existing routing methods.

香港科技大學(廣州) THE HONG KONG UNIVERSITY OF SCIENCE AND ECHNOLOGY (GUANGZHOU)

PAPER

CODE

Experiments

Table 1: Testing accuracy (%) on in-distribution tasks. "Time" denotes the total inference time in minutes.

	MMLU	GSM8K	CMMLU	ARC-C	HumanEval	Avg	Time (m)
	62.14	36.71	43.83	49.43	28.98	44.22	6.94
	59.86	69.63	43.83	48.30	29.80	50.28	7.23
	59.81	33.00	42.82	57.95	22.04	43.13	6.73
	57.42	41.03	<u>49.67</u>	43.47	21.43	42.60	7.11
	60.53	52.38	43.71	52.56	45.10	50.86	6.91
	64.59	47.76	51.77	49.43	26.73	48.06	6.33
	59.46	<u>69.81</u>	44.72	49.43	<u>49.39</u>	54.56	5.33
	63.30	67.39	47.48	50.85	42.85	54.37	46.59
	59.72	69.03	45.47	50.57	46.33	54.22	8.30
	60.48	66.69	45.27	53.13	44.29	53.97	8.01
g)	<u>63.33</u>	66.63	51.77	57.10	40.00	<u>55.77</u>	7.86
	61.07	70.32	51.77	58.52	51.02	58.54	7.97

• RouterDC achieves the highest average accuracy, surpassing the best individual LLM (i.e., dolphin-2.9-llama3-8b)

• RouterDC is better than ZOOTER and CosineClassifier, demonstrating that the proposed dual contrastive losses can train a more effective router. RouterDC outperforms LoraRetriever, validating the usefulness of the sample-LLM contrastive loss.

	PreAlgebra	MBPP	C-EVAL	Avg	Time (m)
	24.80	37.90	46.43	36.38	4.31
tral-7B	<u>39.15</u>	37.74	45.17	40.69	4.13
a	20.78	31.14	44.87	32.26	4.30
al-7B	18.48	29.64	48.44	32.19	4.40
stral-7b	29.28	44.86	45.10	39.75	3.20
-8B	27.67	43.02	52.01	40.90	3.95
ma3-8b	39.72	47.34	44.80	<u>43.95</u>	3.15
	39.03	41.60	48.50	43.04	27.43
er	36.97	38.48	47.77	41.07	4.43
	34.44	41.10	44.95	40.16	4.28
(clustering)	35.36	43.12	52.01	43.50	4.22
	38.81	<u>46.80</u>	<u>51.93</u>	45.85	4.24

Summary

