RouterDC: Query-Based Router by Dual Contrastive Learning for Assembling Large Language Models

Shuhao Chen^{1, *}, Weisen Jiang^{1, 2, *}, Baijiong Lin³, James T. Kwok², Yu Zhang^{1, †}

¹Southern University of Science and Technology ²The Hong Kong University of Science and Technology ³The Hong Kong University of Science and Technology (Guangzhou)

Background

Consider a set of LLMs $\{M_t:t=1,\ldots,T\}$ and a training set $\mathcal{D}_{\text{train}}=\{(\mathbf{x}_i,y_i):i=1,\ldots,n\},$ where \mathbf{x}_i is a query (i.e., question) and y_i is its answer (i.e., ground truth). We design a scoring method to assess the performance of LLMs on queries.

• For an *open-ended* generation query \mathbf{x}_i (requiring a long answer, e.g., GSM8K), we feed it to LLM M times to generate outputs $\{\hat{y}_k\}$ (t) $i,m_i^{\left(\iota\right)}:m=1,\ldots,M\},$ then define the score of LLM \mathcal{M}_t on the query x_t as:

- Large language models (LLMs) have demonstrated proficient capabilities across various tasks. They typically exhibit **varying strengths and weaknesses** across different tasks. Assembling multiple off-the-shelf LLMs can harness their complementary abilities, resulting in better performance than relying on a single LLM.
- Routing is a promising assembling method which **learns a router to select a suitable LLM for each query**. Compared with LLM ensembling, routing is much more efficient as it only needs to perform inference on the selected LLM.
- ZOOTER (NAACL, 2024) scores LLMs for each query, then minimizes Kullback-Leibler divergence between selection probability from the router and the softmax normalized score. However, when multiple LLMs perform well for a query, the normalized score tends to be uniform, which is not a strong supervision signal for learning the router.

• For a *multiple-choice question* \mathbf{x}_i with an option set \mathcal{A}_i (e.g., MMLU), we define the score based on the probability of options, i.e.,

(a): Score distributions of LLMs on an example query (w/ or w/o normalization).

(b): Distribution of the score difference between the top two LLMs.

Scoring

- Based on the score, we construct positive LLMs index set \mathcal{I}^+_i i and negative LLMs index set \mathcal{I}^-_i i as:
- 1. \mathcal{I}_i^+ i^+_ℓ consists of the indices of LLMs corresponding to the top- K_+ scores.
- 2. \mathcal{I}_{i}^{-} \bar{i}^- consists of the indices of LLMs corresponding to the bottom- K_+ scores with s (t) $i^{(i)}$ < 0.5.
- We expect the router to pull the query embedding $\mathcal E({\bf x}_i;{\bf w})$ closer to the positive LLMs' embeddings $\{{\bf k}_{t_+}:t_+\in$ \mathcal{I}^+_i $\{x_t^+\}$ while pushing apart from the negative LLMs' embeddings $\{{\bf k}_{t-}: t_-\in {\cal I}_i^-\}$ i }.

- Minimizing the sample-LLM contrastive loss alone is not stable. Some similar queries can have dissimilar embeddings and may be routed to different LLMs.
- Training samples are grouped into N groups $\{{\cal K}_1,\ldots,{\cal K}_N\}$ by applying k -means algorithm on extracted t-SNE low-dimensional vectors. For a query $x_i \in \mathcal{K}_j$, we randomly select an in-group query x_i^+ $i^+ \in \mathcal{K}_j$ and an outgroup set $\mathcal{X}_i^-\subset\{\cup_{j'\neq j}\mathcal{K}_{j'}\}$ of H queries from the training mini-batch at each iteration.

• We learn a router $R(\mathbf{x};\boldsymbol{\theta})$ by minimizing the final objective consisting of sample-LLM and sample-sample contrastive losses, i.e.,

 $\mathcal{L}_{\textsf{sample-sample}}(\mathbf{x}_i; \boldsymbol{\theta}) = -\log$

$$
s_i^{(t)} = \frac{1}{M} \sum_{m=1}^{M} \textsf{evaluate}(\hat{y}_{i,m}^{(t)}, y_i)
$$

$$
s_i^{(t)} = \begin{cases} \frac{\mathbb{P}_{\mathcal{M}_t}(\hat{y}_i^{(t)}|\mathbf{x}_i)}{\sum_{a \in \mathcal{A}_i}\mathbb{P}_{\mathcal{M}_t}(a|\mathbf{x}_i)} & \text{if} \quad \hat{y}_i^{(t)} = y_i \\ 0 & \text{otherwise} \end{cases}
$$

The proposed RouterDC consists of

- An encoder $\mathcal{E}(\mathbf{x}; \mathbf{w})$ parameterized by w which maps x into an embedding in \mathbb{R}^p .
- T learnable LLM embeddings $\{k_t \in \mathbb{R}^p : t = 1, \ldots, T\}$ for the T LLMs.

For a query \mathbf{x}_i , RouterDC generates a selection probability distribution over T LLMs as

Dual Contrastive Loss

Sample-LLM Contrastive Loss

$$
\mathcal{L}_{\text{sample-LLM}}(\mathbf{x}_i, y_i; \boldsymbol{\theta}) = \sum_{t_+ \in \mathcal{I}_i^+} -\log \frac{e^{\text{Sim}(\mathcal{E}(\mathbf{x}_i; \mathbf{w}), \mathbf{k}_{t_+})}}{e^{\text{Sim}(\mathcal{E}(\mathbf{x}_i; \mathbf{w}), \mathbf{k}_{t_+})} + \sum_{t_- \in \mathcal{I}_i^-} e^{\text{Sim}(\mathcal{E}(\mathbf{x}_i; \mathbf{w}), \mathbf{k}_{t_-})}}
$$

)

Sample-Sample Contrastive Loss

$$
\frac{e^{\textbf{Sim}(\mathcal{E}(\mathbf{x}_i;\mathbf{w}),\mathcal{E}(\mathbf{x}_i^+;\mathbf{w}))}+2}{e^{\textbf{Sim}(\mathcal{E}(\mathbf{x}_i;\mathbf{w}),\mathcal{E}(\mathbf{x}_i^+;\mathbf{w}))}+2}
$$

$$
\dfrac{e^{\textbf{Sim}(\mathcal{E}(\mathbf{x}_i;\mathbf{w}),\mathcal{E}(\mathbf{x}_i^+;\mathbf{w}))}}{e^{\textbf{Sim}(\mathcal{E}(\mathbf{x}_i;\mathbf{w}),\mathcal{E}(\mathbf{x}_i^-, \mathbf{w}))} + \sum_{\mathbf{x}_i^- \in \mathcal{X}_i^-} e^{\textbf{Sim}(\mathcal{E}(\mathbf{x}_i;\mathbf{w}),\mathcal{E}(\mathbf{x}_i^-, \mathbf{w}))}}
$$

 $\phi(\bm{\theta})+\lambda\;\mathcal{L}_{\textsf{sample-sample}}(\mathbf{x}_i;\bm{\theta})$

<u> 1989 - Johann Barn, mars ar breithinn ar chuid ann an t-</u> **CosineClassifie** $\frac{3}{2}$ ZOOTER RouterDC

Mistral-7B

.

Training

$$
\mathcal{L}(\mathcal{D}_{\text{train}};\boldsymbol{\theta}) = \sum_{(\mathbf{x}_i, y_i) \in \mathcal{D}_{\text{train}}} \mathcal{L}_{\text{sample-LLM}}(\mathbf{x}_i, y_i; \boldsymbol{\theta}) +
$$

 $\mathsf{sim}(\mathcal{E}(\mathbf{x}_i;\mathbf{w}),\!mathbf{k}_{t+})$

Experiments

Table 1: Testing accuracy (%) on in-distribution tasks. "Time" denotes the total inference time in minutes.

• RouterDC achieves the **highest** average accuracy, surpassing the best individual LLM (i.e., dolphin-2.9-llama3-8b)

• RouterDC is **better** than ZOOTER and CosineClassifier, demonstrating that the proposed dual contrastive losses can train a more effective router. RouterDC **outperforms** LoraRetriever, validating the usefulness of the sample-LLM contrastive loss.

Table 2: Testing accuracy (%) on out-of-distribution tasks. "Time" denotes the total inference time in minutes.

Candidate LLMs

Summary

- Problem: harness the complementary abilities of LLMs.
- Propose a novel routing method RouterDC and two contrastive losses to train the router.
- Experimental results show that RouterDC effectively assembles LLMs and outperforms individual top-performing LLMs as well as existing routing methods.

香港科技大學(廣州) THE HONG KONG UNIVERSITY OF SCIENCE AND **FECHNOLOGY (GUANGZHOU)**

PAPER

CODE

