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Introduction
We study the overfitting behavior of Kernel Ridge(less) Regression (KRR) with 
Gaussian Kernel: the behavior of the limiting test error when training on noisy 
data as the number of samples tends to infinity by insisting on interpolation 


(Simon et al. 2021) Illustration for three types of overfitting.



• When the input dimension and bandwidth are fixed, the overfitting behavior is  
known to be “catastrophic”


• This is not how Gaussian KRR is typically used in practice


• In fixed dimension, the bandwidth  is tuned, that is decreased, when 
sample size increases


• We also study the behavior when input dimension increases with sample size


• Previous studies considered polynomial increasing dimension (i.e. 
dimension  sample size ) but not subpolynomial scaling

τm

∝ a,  for 0 ≤ a ≤ 1

Introduction



• We provide a more comprehensive picture of overfitting with Gaussian KRR by 
studying the overfitting behavior with varying bandwidth or arbitrarily varying 
dimension


• For fixed dimension, we show that even with varying bandwidth, the interpolation 
learning is never consistent and generally not better than the null predictor 


• For increasing dimension, we show the first example of subpolynomially scaling 
dimension that achieves benign overfitting for (Gaussian) KRR.


• Additionally, we show that KRR with a class of dot-product kernels on the sphere 
(including the Gaussian kernel) is inconsistent when the dimension scales 
logarithmically with sample size.

Contribution



Let  be an unknown distribution over  and let 
 be a dataset consisting of  samples. We want to 

understand the limiting behavior  of the test error 

 of the minimum norm interpolating solution 
 . We will focus on the Gaussian kernel 

. We use taxonomy of benign, tempered, and 

catastrophic overfitting from (Mallinar et al. 2022), which indicates whether 
 is the Bayes (optimal) error, a non-optimal but constant error, or 

infinity.
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Setup



When sampling  , we have that the Gaussian universality holds for 
the eigenfunctions  in the sense that the expected risk is unchanged if we 
replace  with , where  is Gaussian with appropriate parameters, i.e. 

. 


Under this assumption, the eigenframework gives a closed form of the test risk 
in terms of kernel eigenstructure.


Given a positive semi-definite kernel function , we can 

decompose it as , where  and  are the 

eigenvalues and eigenfunctions of the integral operator associated to .
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Assumption (Gaussian design ansatz)



We can write the target function in the basis of  from

,  . Let  be the effective 

regularization, i.e. the solution to , and let 

. Then the predicted risk of  is given 

by 
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Closed form of the test risk
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, . Then the 

predicted risk of  is given 


Formally we will prove results about  but as ample empirical evidence 
suggests, treating  is sufficient for understanding the behavior of 
KRR.
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Closed form of the test risk
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We will assume that the source distribution is uniform on a  dimensional 
sphere, i.e. . We also assume that the marginal  distribution is 
given by a target function  and noise  with mean zero and 
variance  as .


We show that based on how the bandwidth  changes, the minimum norm 
interpolating solution  exhibits either tempered or catastrophic overfitting, and 
we argue that it is almost always worse than the null predictor.

d
x ∼ Unif(𝕊d−1) 𝒴

f* ∈ L𝒟𝒳
(𝕊d−1) ξ

σ2 > 0 y ∼ f*(x) + ξ

τm̂f0

Fixed dimension: Gaussian Kernel with varying bandwidth



The following bounds hold for the predicted risk  of the minimum norm interpolating solution of 
Gaussian KRR:


1. If , then . More precisely, if 

 where , then there is a scalar  that depends only on the 
dimension and  that depends on  such that for all  we have 

.


2. If , then , so for large  we have .


3. If , then . Moreover, suppose that  

for some constants , then there exist  that depend only on , such 
that for all  we have . Consequently,  as long as 

.
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Theorem (Overfitting behavior of Gaussian KRR in fixed dimension)



Empirical validation (Overfitting behavior of Gaussian KRR in fixed dimension)

We plot the dependence of the test error  on the sample size  for Gaussian 


KRR with ,  


respectively. We compare mean test error (blue) with noise level (red) and null predictor error 
(yellow). We also plot test errors for each of the runs (light blue).

R( ̂f0) m

x ∼ Unif(𝕊d−1) f* = 10, dimensions d = 6,4,6, and noise level  σ2 = 1,10,1000



Consider learning a sequence of distributions  over  given by 
 using a sequence of kernels  where  is an independent noise with 

mean 0 and variance . We assume that the projections of  onto the eigenfunction 
of of the kernels  are uniformly bounded. 


We show a generic upper and lower bound on the test risk of KRR in increasing 
dimension, for any scaling of the dimension and sample size. We use a few assumptions:


• The sum of eigenvalues is bounded as . 


• The eigenvalues are not too small, or


• The eigenvalues don’t decay too quickly 


These hold for the Gaussian kernel and other dot-product kernels on the sphere. 
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Increasing dimension



Let  be the multiplicity of k-th eigenvalue corresponding to  and let 
. Let . 

Assume that the target function has at most  nonzero coefficients  with 

 and  for some . Then, if  is the k-th unique eigenvalue and  
are any sample size and dimension, the predicted test risk of minimum norm interpolating 
solution satisfies 
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Theorem (Upper bound for increasing dimension)



If additionally the eigenvalues of  are not too small, in the sense that there is a constant 

 such , then for the predicted test risk of KRR, it holds


.


Note that these conditions hold for Gaussian kernel and dot-product kernels on the sphere.
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Theorem (Lower bound for increasing dimension)



Let  be a sequence of dot-product kernels on  that satisfy 

 for some  Let the dimension  grow 

logarithmically in sample size  (i.e. ). Then, then the 
minimum norm interpolant cannot exhibit benign overfitting, i.e. there exist an 
absolute constant  such that for all 


. 

K(d) 𝕊d−1

max
i≤km ( 1
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b
b > 0. d

m, d = log2(m) m = 2d

η > 0 m, d

R̃( ̂f0) > (1 + η)σ2

Corollary (Inconsistency with dot-product kernel in logarithmically scaling 
dimension)



Let  be the Gaussian kernel on the sphere  with a fixed bandwidth, and take a 
sequence of dimensions  and sample sizes  that scale as  (in 

particular, we take  such that  and  with ). Consider 
learning a sequence of target functions  that have uniformly bounded projections to each 
eigendirection with at  of them nonzero. Then, we have that the minimum norm 
interpolating solution achieves the Bayes error in the limit . In particular, for 

 and  we have


.


    


This establishes the first case of sub-polynomially scaling dimension with benign overfitting 
using the Gaussian kernel.
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Corollary (Benign overfitting with Gaussian kernel and subpolynomial 
dimension)



We studied the overfitting behavior of Gaussian KRR with varying bandwidth or 
dimension.


• For fixed dimension, we show that even with varying bandwidth, the 
interpolation learning is never consistent and generally not better than the 
null predictor 


• For increasing dimension, we show the first example of subpolynomially 
scaling dimension that achieves benign overfitting for (Gaussian) KRR.


• Additionally, we show that KRR with a class of dot-product kernels on the 
sphere (including the Gaussian kernel) is inconsistent when the dimension 
scales logarithmically with sample size.

Summary


