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Motivation

Thompson Sampling (TS)
Outperform Upper Confidence Bound (UCB) empirically
Not easily scalable to large environments (multi-agent scenarios)

Randomized Exploration
Effective in bandit and single-agent RL
Remain underexplored in Cooperative MARL
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Background and Setup

Parallel MDPs

M agents interact independently with their respective MDPs

Share the same but independent state and action spaces

Each agent might have its unique reward functions and
transition kernels

Agents and server can communicate to share data
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Unified Algorithm Framework

Algorithm Unified Algorithm Framework for Randomized Exploration in Parallel MDPs

1: for episode k = 1, ...,K do
2: for agent m ∈M do

3: Receive initial state skm,1 and V k
m,H+1(·)← 0. .

4: {Qk
m,h(·, ·),V

k
m,h(·, ·)}

H
h=1 ← Randomized Exploration ◁ PHE or LMC

5: for step h = 1, ...,H do

6: akm,h ← argmaxa∈A Qk
m,h(s

k
m,h, a).

7: Receive skm,h+1 and rm,h, then update local data.

8: if Condition then

9: SYNCHRONIZE ← True.
10: end if
11: end for
12: end for
13: if SYNCHRONIZE then
14: All the agents upload their newly collected local data to the server. U loc

m,h(k)

15: The server gathers all information and sends it back to each agent. User
h (k)

16: end if
17: end for
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Synchronization Conditions

Synchronization Conditions

1) synchronize at a constant frequency

2) synchronize at an exponential frequency

3) synchronize when the following feature mapping ϕ(·, ·)-based
condition is satisfied

log
det

(
serΛk

h +
locΛ

k
m,h + λI

)
det

(
serΛk

h + λI
) ≥ γ

(k − ks)
,

where ϕ(s, a) : S ×A → Rd , serΛk
h =

∑
User
h (k)ϕ

(
s l , al

)
ϕ
(
s l , al

)⊤
,

locΛk
m,h =

∑
U loc
m,h(k)

ϕ
(
s l , al

)
ϕ
(
s l , al

)⊤
.
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Perturbed-History Exploration

Regression loss with added random Gaussian noises ϵk,l,nh and ξk,nh to
perturb reward and regularizer

L̃k,nm,h(w) =
∑K(k)

l=1 L
((
r lh + ϵk,l,nh

)
+ V k

m,h+1(s
′l), f

(
w;ϕl

))
+ λ

∥∥w + ξk,nh

∥∥2.
Unified Algorithm Framework + PHE ⇒ CoopTS-PHE

Algorithm Perturbed-History Exploration

1: for step h = H, ..., 1 do
2: for n = 1, ...,N do

3: Sample {ϵk,l,nh }l∈[K(k)]
i.i.d∼ N (0, σ2) and ξk,nh ∼ N (0, σ2I) independently.

4: Obtain the perturbed estimated parameter w̃k,n
m,h = argmin L̃k,nm,h(w).

5: end for
6: Qk

m,h ← min
{
maxn∈[N] f

(
w̃k,n

m,h;ϕ
)
,H − h + 1

}+
.

7: V k
m,h(·)← maxa∈A Qk

m,h(·, a).
8: end for
9: Output: {Qk

m,h(·, ·),V k
m,h(·, ·)}Hh=1.
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Langevin Monte Carlo Exploration

Langevin Monte Carlo update: for iterate j = 1, . . . , Jk , the update is
given by

wk,j,n
m,h = wk,j−1,n

m,h − ηm,k∇Lkm,h

(
wk,j−1,n

m,h

)
+
√

2ηm,kβ
−1
m,kϵ

k,j,n
m,h .

Unified Algorithm Framework + LMC ⇒ CoopTS-LMC

Algorithm Langevin Monte Carlo Exploration

1: for step h = H, ..., 1 do
2: for n = 1, ...,N do

3: wk,0,n
m,h = w

k−1,Jk−1,n
m,h .

4: for j = 1, ..., Jk do

5: Sample ϵk,j,nm,h
i.i.d∼ N (0, I) and obtain wk,j,n

m,h through LMC update.
6: end for
7: end for
8: Qk

m,h ← min
{
maxn∈[N] f

(
wk,Jk ,n

m,h ;ϕ
)
,H − h + 1

}+

9: V k
m,h(·)← maxa∈A Q

k
m,h(·, a).

10: end for
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Definition

Linear MDP (linear reward and transition functions) An
MDP(S,A,H,P, r) is a linear MDP with feature map ϕ : S ×A → Rd ,
if for any h ∈ [H], there exist d unknown measures µh = (µ1

h, ..., µ
d
h) over

S and an unknown vector θh ∈ Rd such that for any (s, a) ∈ S ×A,

Ph(·|s, a) =
〈
ϕ(s, a),µh(·)

〉
, rh(s, a) =

〈
ϕ(s, a),θh

〉
.

Cumulative Group Regret The learning goal is to minimize the
cumulative group regret among M agents after K episodes, which is
defined as

Regret(K ) =
∑

m∈M
∑K

k=1

[
V ∗m,1

(
skm,1

)
− V

πk
m

m,1

(
skm,1

)]
.
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Theoretical Results

Table: Comparison on episodic, non-stationary, linear MDPs. We define the
average regret as the cumulative regret divided by the total number of
samples used by the algorithm. Here d is the feature dimension, H is the
episode length, K is the number of episodes, and M is the number of agents in a
multi-agent setting.

Setting Algorithm Cumulative Group Regret Average Regret
Randomized Generalizable Communication
Exploration to Deep RL Complexity

single-
agent

OPT-RLSVI [Zanette et al., 2020] Õ
(
d2H5/2

√
K
)

Õ
(
d3/2H3/2

√
1/K

)
Yes No –

LSVI-UCB [Jin et al., 2020] Õ
(
d3/2H2

√
K
)

Õ
(
d3/2H

√
1/K

)
No No –

LSVI-PHE [Ishfaq et al., 2021] Õ
(
d3/2H2

√
K
)

Õ
(
d3/2H

√
1/K

)
Yes Yes –

LMC-LSVI [Ishfaq et al., 2024] Õ
(
d3/2H2

√
K
)

Õ
(
d3/2H

√
1/K

)
Yes Yes –

multi-
agent

Coop-LSVI [Dubey & Pentland, 2021] Õ
(
d3/2H2

√
MK

)
Õ
(
d3/2H

√
1/MK

)
No No Õ

(
dHM3

)
Asyn-LSVI [Min et al., 2023] Õ

(
d3/2H2

√
K
)

Õ
(
d3/2H

√
1/K

)
No No Õ

(
dHM2

)
CoopTS-PHE (Ours) Õ

(
d3/2H2

√
MK

)
Õ
(
d3/2H

√
1/MK

)
Yes Yes Õ

(
dHM2

)
CoopTS-LMC (Ours) Õ

(
d3/2H2

√
MK

)
Õ
(
d3/2H

√
1/MK

)
Yes Yes Õ

(
dHM2

)
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N-Chain Experiments
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(a) m=2
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(b) m=3

Figure: N-chain task with N = 25 states and m = 2, 3 agents.

When m = 2, PHE achieve higher average returns and LMC
eventually catches up. When m = 3, PHE and LMC outperform
baselines. PHE shows less fluctuation, which supports
theoretical results in misspecified settings.
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Super Mario Bro Experiments

(a) Illustration
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(b) Parallel MDP
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(c) Federated Learning

Figure: Super Mario Bros task with m = 4 agents: (a) illustration; (b) parallel
MDP (communicate whole data); (c) federated learning (only communicate
value function).

PHE and LMC outperform baselines in parallel MDP and
federated learning settings. LMC consistently outperforms
PHE, as the added noise in PHE may not always accurately
reflect true posterior in practice.
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Real-world Experiments in Thermal Control
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(b) Great Falls (cold dry)

Figure: Evaluation performance at Tampa and Great Falls in building energy
systems.

Experiments, trained with parallel data sharing across cities and
varying weather, aim to meet temperature specifications while
minimizing electricity use. LMC shows higher mean returns in
the violin plots.
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Summary of Main Contributions

A unified framework for parallel MDPs + TS-related exploration
strategies PHE and LMC → CoopTS-PHE and CoopTS-LMC.

CoopTS-PHE: perturb reward and regularizer (equivalent to TS)
CoopTS-LMC: perform noisy gradient descent (converge to TS)

Regret Upper Bound: Õ
(
d3/2H2

√
M
(√

dMγ +
√
K
))

Communication Complexity: Õ
(
(d + K/γ)MH

)
Extend to misspecified settings (approximately linear reward and
transition fuctions)

Extensive experiments on various benchmarks

N-chain (require deep exploration)
Super Mario Bros (misspecified setting; federated learning)
Thermal control problem in building energy systems

Outperform existing DQN-based baselines

HH*, WW*, MP, PX (Duke University) Randomized Exploration in CMARL November 13, 2024 13 / 14



14/14

END

Thank you very much for your valuable time!
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