

NeurIPS 24 Main Track

Retrieval-Retro: Retrieval-based Inorganic Retrosynthesis with Expert Knowledge

Heewoong Noh, Namkyeong Lee, Gyung S. Na^{*}, Chanyoung Park^{*}

Korean Advanced Institute of Science and Technology (KAIST) Korea Research Institute of Chemical Technology (KRICT)

Background Fundamental Goal of Material Science & Material Synthesis

Fundamental Goal of Material Science: Discovering new materials (e.g., semiconductor and batteries)

How can we establish synthetic routes for newly discovered materials to enable their successful commercialization beyond mere discovery?

Background Fundamental Goal of Material Science & Material Synthesis

Fundamental Goal of Material Science: Discovering new materials (e.g., semiconductor and batteries)

How can we establish synthetic routes for newly discovered materials to enable their successful commercialization beyond mere discovery?

Retrosynthesis Planning

Background Fundamental Goal of Material Science & Material Synthesis

<u>Fundamental Goal of Material Science</u>: Discovering new materials (e.g., semiconductor and batteries)

How can we establish synthetic routes for newly discovered materials to enable their successful commercialization beyond mere discovery?

Retrosynthesis Planning

Conventional approach

Synthesis recipe optimization & Synthesis experiments

- Identifying similar materials with target materials in the knowledge base
- Rely on chemists' experience and intuition

Conventional approach

To handle novel materials without structural information, we rely solely on chemical composition (i.e., chemical formula)

Motivation Discovering Novel Synthesis Recipes

(a) Subset caseShared PrecursorsTarget Material: $Ca_3Bi(PO_4)_3 \rightarrow PH_6NO_4, Bi_2O_3, CaCO_3$ Reference Material: $BiPO_4 \rightarrow PH_6NO_4, Bi_2O_3$	(c) Statistics 90.3%
(b) New case New Precursors Target Material: $Li_3Mg_7 \rightarrow MgH_2, LiH, Mg$ Reference Material: $Li_4MgV_5O_{10} \rightarrow MgO, Li_2CO_3, V_2O_3$	
(d) Thermodynamic ForcesPrecursor Sets ΔG Target Material: $A_2BCO_4 \rightarrow A_2CO_2, BCO$ -400 meV	Subset New

- Subset case: Majority of the discovered synthetic routes for the target material share a common set of precursor with the reference material from knowledge base
- New case: Entirely new synthesis recipes with new precursor sets \rightarrow Novel synthesis recipes

Motivation Discovering Novel Synthesis Recipes

(a) Subset caseShared PrecursorsTarget Material: $Ca_3Bi(PO_4)_3 \rightarrow PH_6NO_4, Bi_2O_3, CaCO_3$ Reference Material: $BiPO_4 \rightarrow PH_6NO_4, Bi_2O_3$	(c) Statistics 90.3%
(b) New case Target Material: $Li_3Mg_7 \rightarrow MgH_2, LiH, Mg$ Reference Material: $Li_4MgV_5O_{10} \rightarrow MgO, Li_2CO_3, V_2O_3$	
(d) Thermodynamic ForcesPrecursor Sets ΔG Target Material: $A_2BCO_4 \rightarrow A_2CO_2, BCO$ -400 meV	Subset New

- Subset case: Majority of the discovered synthetic routes for the target material share a common set of precursor with the reference material from knowledge base
- New case: Entirely new synthesis recipes with new precursor sets → Novel synthesis recipes

Discovering novel synthesis recipes can accelerate the inorganic material synthesis process

Motivation Domain Expertise: Thermodynamic Relationship

(a) Subset case Target Material: Ca ₃ Bi(PC Reference Material: Bi	Shared Precursors $(D_4)_3 \rightarrow PH_6NO_4, Bi_2O_3, CaCO_3$ $(PO_4 \rightarrow PH_6NO_4, Bi_2O_3)$	(c) Statistics 90.3%
(b) New case Target Material: Li ₃ Reference Material: Li ₄ MgV ₅	$Mg_{7} \rightarrow MgH_{2}, LiH, Mg_{5}O_{10} \rightarrow MgO, Li_{2}CO_{3}, V_{2}O_{3}$	
(d) Thermodynamic Forces Target Material : $A_2BCO_4 \rightarrow$	Precursor Sets ΔG AO, AO2, BCO -400 meV A_2CO_2, BO_2 -100 meV	Subset New

- Domain Expertise: the greater (more negative) thermodynamic driving foce (ΔG) between the target material and the precursor set
 - → the more feasible it is to form the target material using the precursor set

Motivation Domain Expertise: Thermodynamic Relationship

(a) Subset caseShared PrecursorsTarget Material: $Ca_3Bi(PO_4)_3 \rightarrow PH_6NO_4, Bi_2O_3, CaCO_3$ Reference Material: $BiPO_4 \rightarrow PH_6NO_4, Bi_2O_3$	(c) Statistics 90.3%
(b) New caseNew PrecursorsTarget Material: $Li_3Mg_7 \rightarrow MgH_2, LiH, Mg$ Reference Material: $Li_4MgV_5O_{10} \rightarrow MgO, Li_2CO_3, V_2O_3$	
(d) Thermodynamic Forces Target Material: $A_2BCO_4 \rightarrow$ Precursor Sets ΔG AO, AO_2, BCO -400 meV A_2CO_2, BO_2 -100 meV	Subset New Subset

- Domain Expertise: the greater (more negative) thermodynamic driving foce (ΔG) between the target material and the precursor set
 - \rightarrow the more feasible it is to form the target material using the precursor set

Identify effective precursor sets considering thermodynamic driving force ΔG

Methodology Reference Material Retrieval: Masked Precursor Completion (MPC) Retriever

Target material embedding: $\mathbf{m} = M(\mathbf{x})$ Learnable precursor embedding: \mathbf{P} Perturbed precursor embedding: $\widetilde{\mathbf{p}}$ Probability for each precursor: $\sigma(s^T p_i)$ Trained to reconstruct the original precursor vector

- Following a previous work¹, we train Masked Precursor (MPC) Retriever
- ightarrow Identify reference materials sharing similar precursors with the target material
- ightarrow Learn dependencies among precursors and correlation between the precursors and the target material
- Retrieve top-k materials similar to the target material (using *M* and cosine similarity)

Methodology Reference Material Retrieval: Neural Reaction Energy Retriever

$$\Delta G \approx \Delta H = H_{Target} - H_{Precursor\ set}$$

Utilize formation energy of materials (for ΔH) (Target material and precursor sets)

- Thermodynamic driving foce between the target material and precursor set can be quantified by
- \rightarrow Gibbs free energy (ΔG)
- Retrieve materials that have the precursor set capable of inducing favorable reactions with the target material
- ΔG can be approximated by the difference ΔH between the enthalpy of the target and the precursor set

Methodology Reference Material Retrieval: Neural Reaction Energy Retriever

Essential to develop formation energy predictor

1) Calculate for any possible material

Composition-based predictor → Only use composition without structure

2) Specially designed for experimental data

Pretrain on DFT-calculated formation energy → Fine-tune on experimental formation energy

$$\Delta G \approx \Delta H = H_{Target} - H_{Precursor\ set}$$

• Calculate the ΔG between target and precursor set, then retrieve K reference materials that exhibit the most negative ΔG

Methodology Implicit Precursor Extraction

Implicit Precursor Extraction: Our model does not directly utilize the precursor information of reference materials (i.e., explicit usage); instead, it relies solely on the reference materials themselves

Target Material: \mathbf{g}_t Reference Material(K): $\mathbf{G}_r = [\mathbf{g}_r^1, \dots, \mathbf{g}_r^K]$ Concat: $\mathbf{G'}_r^0 = [\mathbf{g'}_r^1, \dots, \mathbf{g'}_r^K]$ $\mathbf{g'}_r^k = \phi_1(\mathbf{g}_r^k)||\mathbf{g}_t)$ $\mathbf{G'}_r^s = \text{Self-Attention}(\mathbf{Q}_{\mathbf{G'}_r^{s-1}}, \mathbf{K}_{\mathbf{G'}_r^{s-1}}, \mathbf{V}_{\mathbf{G'}_r^{s-1}}) \rightarrow \text{determine which information to extract from the reference materials}$ $\mathbf{g}_t^c = \text{Cross-Attention}(\mathbf{Q}_{\mathbf{g}_t^{c-1}}, \mathbf{K}_{\mathbf{G'}_r^S}, \mathbf{V}_{\mathbf{G'}_r^S}) \rightarrow \text{learn favorable synthesis recipes from reference materials}$ $\hat{\mathbf{y}} = \phi_{\text{classifier}}(\mathbf{g}_t || \mathbf{g}_{t:MPC}^C || \mathbf{g}_{t:NRE}^C)$ Training Loss: $\mathcal{L} = -\frac{1}{l} \sum_{i=1}^{l} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)]$

1. Target material (composition vector & element fully connected graph)

- 1. Target material (composition vector & element fully connected graph)
- 2. Retrieve K reference materials from knowledge base using pretrained MPC & NRE retrievers

- 1. Target material (composition vector & element fully connected graph)
- 2. Retrieve K reference materials from knowledge base using pretrained MPC & NRE retrievers
- 3. Pass the target material graph and reference material graphs into a GNN

- 1. Target material (composition vector & element fully connected graph)
- 2. Retrieve K reference materials from knowledge base using pretrained MPC & NRE retrievers
- 3. Pass the target material graph and reference material graphs into a GNN
- 4. Apply self-attention & cross-attention (MPC & NRE branch)

- 1. Target material (composition vector & element fully connected graph)
- 2. Retrieve K reference materials from knowledge base using pretrained MPC & NRE retrievers
- 3. Pass the target material graph and reference material graphs into a GNN
- 4. Apply self-attention & cross-attention (MPC & NRE branch)
- 5. Classifier and calculate the probability of each precursor

Experiments Dataset & Evaluation Protocol

Datasets & Evaluation Protocol

33,343 inorganic material synthesis recipes extracted from 24,304 material science papers Following the preprocessing step, 28,434 target materials are used Year-Split: Train (~ 2014) / Valid (2015, 2016) / Test (2017 ~ 2020) Random-Split: Train (80%) / Valid (10%) / Test (10%) Knolwedge Base: Training set

Importance of Year-Split Setting

Closely replicates the real-world materials discovery conditions

 \rightarrow Evaluation of the model performance without the need for the costly wet-lab experiments

Experiments Effectivenss of Retrieval-Retro in Inorganic Retrosynthesis Planning

				Year Split				t									
Model	Int.	Retr.		Top-K Accuracy			Re	Recall		Top-K Accuracy				Recall			
model			Top-1	Top-3	Top-5	Top-10	Macro	Micro	Top-1	Top-3	Top-5	Top-10	Macro	Micro			
Composition MI P	¥	×	31.60	34.37	35.22	36.56	31.42	31.44	58.56	62.20	62.95	64.32	54.56	55.35			
Composition Will	<u>^</u>	<u>^</u>	(1.70)	(1.58)	(1.43)	(0.160)	(0.030)	(0.060)	(0.47)	(0.36)	(0.029)	(0.42)	(0.44)	(0.57)			
He at al [12]	×	1	45.03	48.02	49.11	51.09	44.72	44.75	61.94	66.44	67.46	68.84	58.55	59.35			
He et al. $[12]$	•	(1.85)	(1.86)	(1.77)	(1.93)	(1.83)	(1.86)	(1.5)	(1.48)	(1.55)	(1.65)	(1.45)	(1.34)				
ElemwiseRetro	1	×	53.45	57.07	58.19	60.84	53.12	53.19	77.23	80.93	81.57	82.78	72.33	73.26			
	•		(0.58)	(0.52)	(0.72)	(0.78)	(0.60)	(0.60)	(0.70)	(0.54)	(0.67)	(0.64)	(1.14)	(0.99)			
Poost		~	54.38	57.82	58.82	60.71	54.01	54.04	78.42	82.32	83.07	84.10	73.38	74.46			
ROOSI	•	•	•	•	^	(0.75)	(0.81)	(1.00)	(1.15)	(0.75)	(0.74)	(0.91)	(0.91)	(0.83)	(0.66)	(1.41)	(1.22)
CrahNat	1	~	57.15	61.60	62.44	64.14	56.79	56.82	78.69	81.62	82.27	83.35	73.27	74.28			
Crabinet	•	^	(0.77)	(0.85)	(0.82)	(0.86)	(0.77)	(0.77)	(0.78)	(0.74)	(0.67)	(0.56)	(1.21)	(0.99)			
Creat Natural		~	58.95	63.10	64.07	66.30	58.54	58.61	77.91	81.55	82.37	83.50	72.96	73.88			
Graph Network	•	^	(0.41)	(0.63)	(0.68)	(0.62)	(0.42)	(0.41)	(1.31)	(0.98)	(0.92)	(0.90)	(1.53)	(1.29)			
Create Nature de 1 MDC			60.01	64.15	65.15	67.19	59.61	59.66	79.09	82.95	83.82	84.97	73.86	74.81			
Graph Network + MPC	~	~	(1.10)	(1.10)	(1.17)	(0.83)	(1.10)	(1.10)	(1.25)	(1.13)	(1.19)	(0.94)	(1.34)	(1.23)			
Potrioval Potro	/	/	61.16	65.92	67.18	69.45	60.97	61.06	79.81	83.62	84.46	85.70	74.61	75.49			
Retrieval-Retro				~	(0.38)	(0.71)	(0.76)	(1.03)	(0.62)	(0.62)	(0.68)	(0.77)	(0.78)	(0.88)	(0.98)	(0.89)	

- Modeling interaction among the constituent elements more effective than simple composition vector
- Using precursor information from reference materials from KB enhances the performance
- Retrieval-Retro surpasses the all baselines, especially for the year split setting, which is more challenging

Experiments Discovering Novel Synthesis Recipes

90	90.3%			Retriever		Subset Case				New Case				
			Model Refer.	MPC	NRE	Top-1	Top-3	Top-5	Top-10	Top-1	Top-3	Top-5	Top-10	
				x	v v	63.98	67.95	68.83	70.83	16.37	22.00	23.78	27.93	
			Graph Natwork	Explicit	^	^	(0.34)	(0.53)	(0.64)	(0.81)	(1.91)	(3.47)	(3.48)	(1.66)
			Oraph Network	Explicit	1	×	65.01	69.06	69.98	72.03	17.63	22.45	24.22	26.22
							(1.10)	(1.17)	(1.22)	(0.92)	(1.66)	(2.63)	(2.65)	(2.74)
			.7% Retrieval-Retro Implicit		1	×	65.07	69.44	70.41	72.47	19.70	24.52	26.30	30.15
		9 7%		~	^	(0.80)	(1.27)	(1.24)	(1.46)	(1.08)	(1.42)	(1.28)	(2.05)	
	set			1	1	66.00	70.51	71.76	73.92	20.15	27.04	28.37	31.56	
	New			~	v	(0.32)	(0.61)	(0.61)	(0.90)	(1.29)	(1.93)	(2.05)	(3.44)	

- Explicitly incorporating MPC retrievers enhances the model performance in Subset Case, however negatively impacts performance in Top-10 New Case
- Implicitly integrates precursor information shows performance improvements in both cases
 - \rightarrow wider performance gap in the New Case (a more realistic and challenging scenario)
- NRE retriever consistently enhances the model performance
 - ightarrow acquire additional new precursor information that MPC retriever might overlook

Experiments Model Analysis

D / 1		Тор-К А	Recall			
Retriever	Top-1	Top-3	Top-5	Top-10	Macro	Micro
Random	58.42	63.57	64.53	66.61	58.98	59.02
Kalluolli	(1.68)	(0.64)	(0.53)	(0.64)	(0.64)	(0.64)
MPC only	59.96	64.49	65.57	68.14	59.57	59.64
	(0.66)	(0.74)	(0.96)	(0.81)	(0.67)	(0.69)
NRE only	60.28	<u>64.70</u>	65.75	68.00	59.88	<u>59.95</u>
Total only	(0.63)	(1.21)	(1.17)	(1.39)	(0.63)	(0.60)
Retrieval-Retro	61.16	65.92	67.18	69.45	60.97	61.06
(MPC + NRE)	(0.38)	(0.71)	(0.76)	(1.03)	(0.62)	(0.62)

- When reference materials are randomly retrieved (Random)
- ightarrow Irrelevant precursor information
- Using just one of the retrievers underperforms (i.e., either MPC or NRE)
- \rightarrow Complementary relationship of MPC and NRE

Experiments Model Analysis

		Тор-К	Recall			
Retriever	Top-1	Top-3	Top-5	Top-10	Macro	Micro
Random	58.42	63.57	64.53	66.61	58.98	59.02
Kalidolli	(1.68)	(0.64)	(0.53)	(0.64)	(0.64)	(0.64)
MDC only	59.96	64.49	65.57	68.14	59.57	59.64
WIFC Only	(0.66)	(0.74)	(0.96)	(0.81)	(0.67)	(0.69)
NRE only	60.28	64.70	65.75	68.00	<u>59.88</u>	<u>59.95</u>
	(0.63)	(1.21)	(1.17)	(1.39)	(0.63)	(0.60)
Retrieval-Retro	61.16	65.92	67.18	69.45	60.97	61.06
(MPC + NRE)	(0.38)	(0.71)	(0.76)	(1.03)	(0.62)	(0.62)

- When reference materials are randomly retrieved (Random)
- ightarrow Irrelevant precursor information
- Using just one of the retrievers underperforms (i.e., either MPC or NRE)
- ightarrow Complementary relationship of MPC and NRE

- The larger the KB, the more accurate predictions
- Varying the number of reference materials *K*
- \rightarrow K = 3, Importance of incorporating precursor information from the reference materials

Experiments Qualitative Analysis

Model	Retriever	Retrieved Material	Corresponding Precursor Sets	Predicted Precursor Set	Answer
Only MPC	MPC	$\begin{array}{c} {\rm LiNaPbPO} \\ {\rm Li}_{0.5}{\rm Na}_{0.5}{\rm PO}_{3} \\ {\rm Li}_{3}{\rm V}_{1.92}{\rm Al}_{0.08}({\rm PO}_{4})_{3} \end{array}$	$\begin{array}{l} \{Li_{2}CO_{3}, H_{3}PO_{4}, Na_{2}CO_{3}, Pb_{3}O_{4}\} \\ \{Li_{2}CO_{3}, NH_{4}H_{2}PO_{4}, NaPO_{3}\} \\ \{Al, V_{2}O_{5}, LiH_{2}PO_{4}\} \end{array}$	$\{Li_2CO_3, NH_4H_2PO_4\}$	×
MPC + NRE	MPC	$\begin{array}{c} {\rm LiNaPbPO} \\ {\rm Li}_{0.5}{\rm Na}_{0.5}{\rm PO}_{3} \\ {\rm Li}_{3}{\rm V}_{1.92}{\rm Al}_{0.08}({\rm PO}_{4})_{3} \end{array}$	$\begin{array}{l} \{Li_{2}CO_{3},H_{3}PO_{4},Na_{2}CO_{3},Pb_{3}O_{4}\}\\ \{Li_{2}CO_{3},NH_{4}H_{2}PO_{4},NaPO_{3}\}\\ \{Al,V_{2}O_{5},LiH_{2}PO_{4}\}\end{array}$	{Li ₂ CO ₃ , NH ₄ H ₂ PO ₄ , PbO}	/
(Ours)	NRE	$\begin{array}{c} Pb_3(PO_4)_2\\ Li_3P\\ PbP_7 \end{array}$	$\begin{array}{l} \{PbO, NH_4H_2PO_4\} \\ \{P, Li\} \\ \{P, Pb\} \end{array}$	(=-2 3, 4 2 4,)	·

Target Material: $Pb_9[Li_2(P_2O_7)_2(P_4O_{13})_2]$

When only MPC retriever is used, the model fails to predict the entire precursor set

• When the NRE retriever is used with MPC retriever, the model successfully predicts the answer set \rightarrow can extract precursor information from Pb₃(PO₄)₂, which has the essential precursor PbO

Conclusion

- We propose Retrieval-Retro, a novel approach for inorganic retrosynthesis planning that implicitly extracts precursor information from retrieved reference materials.
- Retrieval-Retro employs multiple attention layers to enhance and extract relevant information from reference materials.
- Retrieval-Retro integrates precursor information from a diverse range of reference materials, supported by the complementary assistance of a neural reaction energy (NRE) retriever designed to leverage expert knowledge.
- Extensive experiments, including realistic scenarios, demonstrate the effectiveness and superiority of Retrieval-Retro in discovering novel synthesis pathways for target materials.

Thank you!

[Full Paper] https://arxiv.org/abs/2410.21341

[Source Code] https://github.com/HeewoongNoh/Retrieval-Retro

[Lab Homepage] http://dsail.kaist.ac.kr

[Email] heewoongnoh@kaist.ac.kr

Code

