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Background Fundamental Goal of Material Science & Material Synthesis

Fundamental Goal of Material Science: Discovering new materials (e.g., semiconductor and batteries)

How can we establish synthetic routes for newly discovered materials to enable their 
successful commercialization beyond mere discovery?
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Fundamental Goal of Material Science: Discovering new materials (e.g., semiconductor and batteries)

How can we establish synthetic routes for newly discovered materials to enable their 
successful commercialization beyond mere discovery?

Novel target material
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with target)
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 Identifying similar materials with target materials in the knowledge base

 Rely on chemists’ experience and intuition

Retrosynthesis Planning
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Background Precursor Prediction
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To handle novel materials without structural information, we rely solely on 
chemical composition (i.e., chemical formula)

Background Precursor Prediction
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(b) New case
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Motivation Discovering Novel Synthesis Recipes

 Subset case: Majority of the discovered synthetic routes for the target material share a common 
set of precursor with the reference material from knowledge base

 New case: Entirely new synthesis recipes with new precursor sets  Novel synthesis recipes
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Motivation Discovering Novel Synthesis Recipes

 Subset case: Majority of the discovered synthetic routes for the target material share a common 
set of precursor with the reference material from knowledge base

 New case: Entirely new synthesis recipes with new precursor sets  Novel synthesis recipes

Discovering novel synthesis recipes can accelerate the inorganic material synthesis process



12

Motivation Domain Expertise: Thermodynamic Relationship
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Identify effective precursor sets considering thermodynamic driving force ∆𝐺𝐺
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Methodology Reference Material Retrieval: Masked Precursor Completion (MPC) Retriever

 Following a previous work1, we train Masked Precursor (MPC) Retriever

 Identify reference materials sharing similar precursors with the target material

 Learn dependencies among precursors and correlation between the precursors and the target material

 Retrieve top-k materials similar to the target material (using 𝑴𝑴 and cosine similarity)

[1] He, Tanjin, et al. "Precursor recommendation for inorganic synthesis by machine learning materials similarity from scientific literature." Science advances 9.23 (2023)

Target material embedding:

Learnable precursor embedding:

Perturbed precursor embedding:

Probability for each precursor:

Trained to reconstruct the original precursor vector 

𝝈𝝈(𝒔𝒔𝑻𝑻𝒑𝒑𝒊𝒊)

𝐦𝐦 = 𝑴𝑴(x)

𝐏𝐏

�𝐏𝐏
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Methodology Reference Material Retrieval: Neural Reaction Energy Retriever

 Thermodynamic driving foce between the target material and precursor set can be quantified by 

 Gibbs free energy (∆𝑮𝑮)

 Retrieve materials that have the precursor set capable of inducing favorable reactions with the target 
material

 ∆𝐺𝐺 can be approximated by the difference ∆𝐻𝐻 between the enthalpy of the target and the precursor set

Utilize formation energy of materials (for ∆𝐻𝐻) 
(Target material and precursor sets)
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Methodology Reference Material Retrieval: Neural Reaction Energy Retriever

 Calculate the ∆𝐺𝐺 between target and precursor set, then retrieve 𝐾𝐾 reference materials that exhibit 
the most negative  ∆𝐺𝐺

Essential to develop formation energy predictor

1)  Calculate for any possible material

Composition-based predictor 
 Only use composition without structure

2) Specially designed for experimental data

Pretrain on DFT-calculated formation energy
 Fine-tune on experimental formation energy
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Methodology Implicit Precursor Extraction

Training Loss:

Target Material:

Reference Material(𝐾𝐾): Concat:

 determine which information to extract from the reference materials

 learn favorable synthesis recipes from reference materials

Implicit Precursor Extraction: Our model does not directly utilize the 
precursor information of reference materials (i.e., explicit usage); 
instead, it relies solely on the reference materials themselves
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Methodology Overall Framework of Retrieval-Retro

1. Target material (composition vector & element fully connected graph)
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Methodology Overall Framework of Retrieval-Retro

1. Target material (composition vector & element fully connected graph)

2. Retrieve K reference materials from knowledge base using pretrained MPC & NRE retrievers

3. Pass the target material graph and reference material graphs into a GNN

4. Apply self-attention & cross-attention (MPC & NRE branch)

5. Classifier and calculate the probability of each precursor
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Experiments Dataset & Evaluation Protocol

Datasets & Evaluation Protocol

33,343 inorganic material synthesis recipes extracted from 24,304 material science papers

Following the preprocessing step, 28,434 target materials are used

Year-Split: Train ( ~ 2014) / Valid (2015, 2016) / Test (2017 ~ 2020)

Random-Split: Train (80%) / Valid (10%) / Test (10%)

Knolwedge Base: Training set

Importance of Year-Split Setting

Closely replicates the real-world materials discovery conditions 

 Evaluation of the model performance without the need for the costly wet-lab experiments
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Experiments Effectivenss of Retrieval-Retro in Inorganic Retrosynthesis Planning

 Modeling interaction among the constituent elements more effective than simple composition vector

 Using precursor information from reference materials from KB enhances the performance

 Retrieval-Retro surpasses the all baselines, especially for the year split setting, which is more challenging
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Experiments Discovering Novel Synthesis Recipes

 Explicitly incorporating MPC retrievers enhances the model performance in Subset Case, however

negatively impacts performance in Top-10 New Case 

 Implicitly integrates precursor information shows performance improvements in both cases

 wider performance gap in the New Case (a more realistic and challenging scenario)

 NRE retriever consistently enhances the model performance

 acquire additional new precursor information that MPC retriever might overlook

9.7%

90.3%

Su
bs

et

N
ew
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Experiments Model Analysis

 When reference materials are randomly 
retrieved (Random)

 Irrelevant precursor information

 Using just one of the retrievers underperforms
(i.e., either MPC or NRE) 
 Complementary relationship of MPC and NRE
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Experiments Model Analysis

 When reference materials are randomly 
retrieved (Random)

 Irrelevant precursor information

 The larger the KB, the more accurate predictions

 Varying the number of reference materials 𝐾𝐾
 𝐾𝐾 = 3, Importance of incorporating precursor 
information from the reference materials

 Using just one of the retrievers underperforms
(i.e., either MPC or NRE) 
 Complementary relationship of MPC and NRE
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Experiments Qualitative Analysis

 When only MPC retriever is used, the model fails to predict the entire precursor set

 When the NRE retriever is used with MPC retriever, the model successfully predicts the answer set

 can extract precursor information from Pb3(PO4)2, which has the essential precursor PbO

Target Material:
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Conclusion

 We propose Retrieval-Retro, a novel approach for inorganic retrosynthesis planning that implicitly 
extracts precursor information from retrieved reference materials.

 Retrieval-Retro employs multiple attention layers to enhance and extract relevant information from 
reference materials.

 Retrieval-Retro integrates precursor information from a diverse range of reference materials, supported 
by the complementary assistance of a neural reaction energy (NRE) retriever designed to leverage expert 
knowledge.

 Extensive experiments, including realistic scenarios, demonstrate the effectiveness and superiority of 
Retrieval-Retro in discovering novel synthesis pathways for target materials.
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[Full Paper] https://arxiv.org/abs/2410.21341

[Source Code] https://github.com/HeewoongNoh/Retrieval-Retro
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