

The 38 Annual Conference on Neural Information Processing Systems

DECEMBER 10-15, 2024 | VANCOUVER, CANADA

Improving Visual Prompt Tuning by Gaussian Neighborhood Minimization for Long-Tailed Visual Recognition

Mengke Li, Ye Liu, Yang Lu, Yiqun Zhang, Yiu-ming Cheung, Hui Huang^{*}

Reported by Ye Liu

SAM (Pierre et al. 2021) improves model generalization by flattening minima.

Its generalization performance is impacted by imbalanced data distributions

Motivation:

- Flatten loss landscape to enhance model generalization.
- Introduce **distribution-independent** perturbation.

EURAL INFORM

PROCESSING SY

Gaussian neighborhood loss:

$$L^{GN}_{\mathcal{T}}(oldsymbol{ heta}) = \mathbb{E}_{arepsilon_i \in \mathcal{N}(0,\sigma^2)}[L_{\mathcal{T}}(oldsymbol{ heta}+oldsymbol{arepsilon})]$$

• Parameter update strategy:

$$ilde{oldsymbol{arepsilon}}_t =
ho_{GNM} \cdot \left[arepsilon_i
ight]_{i=1}^k, \; arepsilon_i \sim \mathcal{N}(0,\sigma^2)$$

$$oldsymbol{ heta}_{t+1}^{GNM} = oldsymbol{ heta}_t - lpha_t igl(
abla_{oldsymbol{ heta}_t} L_{\mathcal{T}}(oldsymbol{ heta}_t) ert_{oldsymbol{ heta}_t} + \lambda oldsymbol{ heta}_t igr)$$

Comparison of parameter update strategies between GNM and SAM :

Our proposed GNM:

- <u>Is well-suited for long-tailed data.</u> GNM is in **sample-independent** manner.
- <u>Saves computational overhead</u>. The parameter update in GNM does **not** need additional forward and backward pass to calculate perturbations.

Method	200	100 50		10		
DNN-based model (Backbone: ResNet32)						
BBN [68]	37.2	42.6	47.0	59.1		
RIDE [57]	45.8	50.4	55.0	-		
MisLAS [66]	43.5	47.0	52.3	63.2		
BCL [72]	-	51.9	56.6	64.9		
GCL [32]	44.8	48.6	53.6	-		
NCL [29]	-	54.2	58.2	-		
GPaCo [7]	-	52.3	56.4	65.4		
SHIKE [22]	-	56.3	59.8	-		
DNN-based model with SAM						
\overline{CCSAM} $\overline{[71]}$	45.7	50.8	53.9			
ImbSAM [70]	-	54.8	59.3	59.7		
Self-attention-based model (Backbone: ViT-B/16)						
VPT [21]	72.8	81.0	84.8	89.6		
LiVT [<mark>62</mark>]	-	58.2	-	69.2		
LPT [10]	87.9	89.1	90.0	91.0		
GNM-PT (ours)	<u>89.2</u>	<u>90.3</u>	<u>91.2</u>	<u>91.8</u>		

Comparison results on CIFAR100-LT

Method	Head	Med	Tail	Overall	N	/lethod	Head	Med	Tail	Overall
DNN-based model (Backbone: ResNet152)				DNN-based model (Backbone: ResNet50)						
LWS [23]	40.6	39.1	28.6	37.6	L	WS [23]	72.9	71.2	69.2	70.5
RIDE [57]	44.4	40.6	33.0	40.4	R	RIDE [57]	76.5	74.2	70.5	72.8
MisLAS [66]	39.6	43.3	36.1	40.4	N	/lisLAS [66]	73.2	72.4	70.4	71.6
GCL [32]	38.6	42.6	38.4	40.3		SCL [32]	-	-	-	72.0
NCL [29]		-	-	41.8	N	NCL [29]	72.7	75.6	74.5	74.9
$GP_{2}C_{2}$	30.5	47.2	33.0	41.0		PaCo [7]	-	-	-	75.4
	12 6	47.2	44.9	41.7		$\frac{[22]}{[22]}$		- 		
SHIKE [22] 43.0 39.2 44.8 41.9				DININ-Dased model with SAM						
	ased mo	del with	1 SAM		L	LDAM+SAM [4/]	64.1	/0.5	/1.2	/0.1
CCSAM [71]	41.2	42.1	36.4	40.6	C	CCSAM [71]	65.4	70.9	72.2	70.9
MHSA-based model (Backbone: ViT-B/16)				I	mbSAM [70]	68.2	72.5	72.9	71.1	
Supplementary with linguistic data			L	MHSA-based model (Backbone: ViT-B/16)						
\overline{V} I-LTR [52] - 54 2 48 5 42 0 50 1 ³			Supplementary with linguistic data							
$P \Delta C [38]$	48 7	48.3	41.8	$\frac{2311}{472^3}$	V	/L-LTR [52]	-	-	-	76.8 ³
	V_{iouol}				R	RAC [38]	75.9	80.5	81.1	<u>80.2</u> ³
	$v_{1}sual$	-omy				;	Visual-o	nly – –		
Decoder [60]	-	-	-	46.8	Ē	Decoder [60]				- 59.2 -
LPT [10]	47.6	52.1	48.4	49.7 ³	L	PT [10]	-	-	79.3	76.1
LiVT [62]	48.1	40.6	27.5	40.8	L	.iVT [<mark>62</mark>]	78.9	76.5	74.8	76.1
GNM-PT (ours)	46.6	53.3	49.4	<u>50.1</u>	0	GNM-PT (ours)	61.5	77.1	79.3	<u>76.5</u>
GNM-PT (ours)	48.6	52.1	47.9	50.0 ⁴	0	GNM-PT (ours)	76.3	77.6	75.0	76.3 ⁴

Comparison results on Places-LT and iNaturalist 2018.

Method	Acc. (%)	NET (s)
CE	81.02	39.78
CE+SAM	82.48	72.51
CE+GNM	82.50	40.16 (\ 44.61%)
GCL+DRW	89.58	$ \overline{40.00}$
GCL+DRW+SAM	89.69	74.36
GCL+DRW+GNM	90.28	41.87 (↓ 43.69%)

Save computational overhead

Consistently enhance the performance of GCL across all categories in every scenario.

• Achieve a flat loss landscape.

Pros:

Simple and effective:

- Balance the generalization capabilities of both head and tail classes;
- Little additional computational cost.

Cons:

Need to further re-balancing the classifier:

• A rebalancing strategy is also needed to obtain a more balanced classifier.

Thanks

- More details: http://arxiv.org/abs/2410.21042 .
- Code: https://github.com/Keke921/GNM-PT .
- Contact: limengke@gml.ac.cn; zbdly226@gmail.com ٠

