
Learning Diffusion Priors from Observations by Expectation Maximization
François Rozet, Gérôme Andry, François Lanusse and Gilles Louppe

arXiv:2405.13712

francois-rozet/
diffusion-priors

TL;DR We adapt the expectation-maximization algorithm to
train diffusion models from (heavily) incomplete and noisy
observations only. Additionally, we propose MMPS, a faster
and more accurate posterior sampling scheme for uncondi-
tional diffusion models.

Introduction
Many scientific applications are inverse problems, where the goal is to
recover a latent 𝑥 given an observation 𝑦.

𝑦 = mask(𝑥) + noise

𝑦 is not sufficient to recover 𝑥
unless we have prior knowledge

With a prior 𝑝(𝑥), the target becomes the posterior distribution 𝑝(𝑥 | 𝑦).

𝑥 𝑦
𝑝(𝑦 | 𝑥) posterior

⎴⎴⎴𝑝(𝑥 | 𝑦) ∝
prior

⎴𝑝(𝑥)
likelihood
⎴⎴⎴𝑝(𝑦 | 𝑥) (1)

Recently, diffusion models (DMs) proved to be remarkable priors for
posterior inference. But can they be trained from incomplete and noisy
observations only?

Empirical Bayes (EB)
EB formulates this problem as finding the parameters 𝜃 of a prior model
𝑞𝜃(𝑥) for which the evidence 𝑞𝜃(𝑦) is closest to the empirical distribution
of observations 𝑝(𝑦).

𝜃

𝑁

𝑥 𝑦

𝑞𝜃(𝑥)

𝑝(𝑦 | 𝑥)

𝑞𝜃(𝑦) = ∫ 𝑝(𝑦 | 𝑥) 𝑞𝜃(𝑥) d𝑥 (2)

arg min
𝜃

KL(𝑝(𝑦) ∥ 𝑞𝜃(𝑦))

= arg min
𝜃

𝔼𝑝(𝑦)[− log 𝑞𝜃(𝑦)]
(3)

Sadly, with a diffusion prior 𝑞𝜃(𝑥), the density 𝑞𝜃(𝑦) is not tractable.

Expectation-Maximization (EM) algorithm
For any two sets of parameters 𝜃𝑎 and 𝜃𝑏,

log 𝑞𝜃𝑎
(𝑦) − log 𝑞𝜃𝑏

(𝑦) ≥ 𝔼𝑞𝜃𝑏
(𝑥 | 𝑦)[log 𝑞𝜃𝑎

(𝑥, 𝑦) − log 𝑞𝜃𝑏
(𝑥, 𝑦)] (4)

Therefore, starting from 𝜃0, the EM update

𝜃𝑘+1 = arg max
𝜃

𝔼𝑝(𝑦)𝔼𝑞𝜃𝑘
(𝑥 | 𝑦)[log 𝑞𝜃(𝑥, 𝑦) − log 𝑞𝜃𝑘

(𝑥, 𝑦) ] (5)

leads to a sequence of parameters 𝜃𝑘 for which 𝔼𝑝(𝑦)[log 𝑞𝜃𝑘
(𝑦)] is monot-

onically increasing and converges to a local optimum.

Methods
In the context of EB, 𝑞𝜃(𝑥, 𝑦) = 𝑞𝜃(𝑥) 𝑝(𝑦 | 𝑥) and the EM update becomes

𝜃𝑘+1 = arg max
𝜃

𝔼𝑝(𝑦)𝔼𝑞𝜃𝑘
(𝑥 | 𝑦)[log 𝑞𝜃(𝑥) + log 𝑝(𝑦 | 𝑥) ] (6)

Intuitively, 𝑞𝜃𝑘+1
(𝑥) ≈ ∫ 𝑞𝜃𝑘

(𝑥 | 𝑦) 𝑝(𝑦) d𝑦 is more consistent with the distri-
bution of observations 𝑝(𝑦) than 𝑞𝜃𝑘

(𝑥).

As long as we can

(i) generate samples from the posterior 𝑞𝜃𝑘
(𝑥 | 𝑦) and

(ii) train the prior 𝑞𝜃𝑘+1
(𝑥) to fit these samples,

we can train any model 𝑞𝜃(𝑥) from observations, including DMs!

Moment Matching Posterior Sampling (MMPS)
To generate from 𝑝(𝑥), DMs approximate the score ∇𝑥𝑡

log 𝑝(𝑥𝑡) of a series
of increasingly noisy distributions 𝑝(𝑥𝑡) = ∫ 𝒩(𝑥𝑡 | 𝛼𝑡𝑥, Σ𝑡) 𝑝(𝑥) d𝑥. To
sample from the posterior 𝑝(𝑥 | 𝑦), we need to approximate

posterior score
⎴⎴⎴⎴⎴⎴∇𝑥𝑡

log 𝑝(𝑥𝑡 | 𝑦) =
prior score

⎴⎴⎴⎴⎴∇𝑥𝑡
log 𝑝(𝑥𝑡) +

likelihood score
⎴⎴⎴⎴⎴⎴∇𝑥𝑡

log 𝑝(𝑦 | 𝑥𝑡) (7)

For a linear Gaussian observation process 𝑝(𝑦 | 𝑥) = 𝒩(𝑦 | 𝐴𝑥, Σ𝑦), the
approximation 𝑝(𝑥 | 𝑥𝑡) ≈ 𝒩(𝑥 | 𝔼[𝑥 | 𝑥𝑡], 𝕍[𝑥 | 𝑥𝑡]) leads to

∇𝑥𝑡
log 𝑝(𝑦 | 𝑥𝑡) ≈ ∇𝑥𝑡

log 𝒩(𝑦 | 𝐴𝔼[𝑥 | 𝑥𝑡], Σ𝑦 + 𝐴𝕍[𝑥 | 𝑥𝑡]𝐴⊤)

≈ ∇𝑥𝑡
𝔼[𝑥 | 𝑥𝑡]

⊤𝐴⊤(Σ𝑦 + 𝐴𝕍[𝑥 | 𝑥𝑡]𝐴⊤)−1(𝑦 − 𝐴𝔼[𝑥 | 𝑥𝑡])⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
symmetric positive definite linear system

(8)

𝔼[𝑥 | 𝑥𝑡] and 𝕍[𝑥 | 𝑥𝑡] are linked to the score via Tweedie’s formulae

𝔼[𝑥 | 𝑥𝑡] = 𝑥𝑡 + Σ𝑡∇𝑥𝑡
log 𝑝(𝑥𝑡)

𝕍[𝑥 | 𝑥𝑡] = Σ𝑡 + Σ𝑡∇2
𝑥𝑡

log 𝑝(𝑥𝑡)Σ𝑡 = Σ𝑡∇⊤
𝑥𝑡

𝔼[𝑥 | 𝑥𝑡]
(9)

Instead of computing an expensive matrix inverse, we can solve the linear
system in Eq. (8) with the conjugate gradient method.

Results

Figure 1. Samples from the posterior 𝑞𝜃𝑘
(𝑥 | 𝑦) along the EM iterations for

the corrupted (75%) CIFAR-10 experiment. Samples become gradually more
detailed and less noisy with iterations.

Da
ra

s 
(2

02
3) Corruption FID ↓ IS ↑

0.20 11.70 7.97
0.40 18.85 7.45
0.60 28.88 6.88

O
ur

s

Corruption FID ↓ IS ↑
0.25 5.88 8.83
0.50 6.76 8.75
0.75 13.18 8.14

Table 1. Evaluation of final priors trained on corrupted CIFAR-10.

Figure 2. Accelerated MRI posterior samples using a diffusion prior trained
from incomplete (𝑅 = 8) spectral observations only. Samples are detailed

and varied, while remaining consistent with the observation.
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