Learning Diffusion Priors from Observations by Expectation Maximization

François Rozet, Gérôme Andry, François Lanusse and Gilles Louppe

TL;DR We adapt the expectation-maximization algorithm to train diffusion models from (heavily) incomplete and noisy observations only. Additionally, we propose MMPS, a faster and more accurate posterior sampling scheme for unconditional diffusion models.

Introduction

Many scientific applications are **inverse problems**, where the goal is to recover a latent x given an observation y.

 $y = \mathrm{mask}(x) + \mathrm{noise}$

y is not sufficient to recover *x* unless we have **prior knowledge**

With a prior p(x), the target becomes the posterior distribution $p(x \mid y)$.

$$\underbrace{x} \xrightarrow{p(y \mid x)} \underbrace{y} \qquad \qquad \underbrace{posterior}_{p(x \mid y)}$$

 $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array} \\
\hline p(x \mid y) \\
\end{array} \\
\hline p(x) \\
\hline p(x) \\
\hline p(y \mid x) \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}$ \left(1 \\
\end{array}
\left(1 \\
\end{array}
\left(1 \\
\end{array}
\left(1 \\
\end{array}

Recently, **diffusion models** (DMs) proved to be remarkable priors for posterior inference. But can they be trained from **incomplete and noisy observations** only?

Empirical Bayes (EB)

EB formulates this problem as finding the parameters θ of a prior model $q_{\theta}(x)$ for which the evidence $q_{\theta}(y)$ is closest to the empirical distribution of observations p(y).

$$\begin{array}{c} \overbrace{\theta} \\ q_{\theta}(x) \\ \hline \\ x \\ \hline \\ x \\ \hline \\ y \\ N \end{array} \end{array} \begin{array}{c} q_{\theta}(y) = \int p(y \mid x) \ q_{\theta}(x) \ dx \quad (2) \\ arg \min_{\theta} \operatorname{KL}(p(y) \parallel q_{\theta}(y)) \\ = arg \min_{\theta} \mathbb{E}_{p(y)}[-\log q_{\theta}(y)] \end{array}$$
(3)

Sadly, with a diffusion prior $q_{\theta}(x)$, the density $q_{\theta}(y)$ is not tractable.

For any two sets of parameters θ_a and θ_b ,

$$\log q_{\theta_a}(y) - \log q_{\theta_b}(y) \geq \mathbb{E}_{q_{\theta_b}(x \mid y)} \Big[\log q_{\theta_a}(x,y) - \log q_{\theta_b}(x,y) \Big] \qquad (1 \leq |x| + |y|) \leq |x| + |y| \leq |x| + |y| \leq |y| + |y| + |y| \leq |y| + |y| + |y| \leq |y| + |y$$

Therefore, starting from $\theta_0,$ the EM update

$$\frac{\theta_{k+1}}{\theta} = \arg \max_{\theta} \mathbb{E}_{p(y)} \mathbb{E}_{q_{\theta_k}(x \mid y)} \Big[\log q_{\theta}(x, y) - \underbrace{\log q_{\theta_k}(x, y)}_{\theta_k} \Big]$$
(5)

leads to a **sequence of parameters** θ_k for which $\mathbb{E}_{p(y)}\left[\log q_{\theta_k}(y)\right]$ is monotonically increasing and converges to a local optimum.

Methods

In the context of EB, $q_{\theta}(x,y) = q_{\theta}(x) \ p(y \mid x)$ and the EM update becomes

$$\theta_{k+1} = \arg\max_{\theta} \mathbb{E}_{p(y)} \mathbb{E}_{q_{\theta_k}(x \mid y)} \Big[\log q_{\theta}(x) + \underline{\log p(y \mid x)} \Big]$$
(6)

Intuitively, $q_{\theta_{k+1}}(x) \approx \int q_{\theta_k}(x \mid y) p(y) \, \mathrm{d}y$ is more consistent with the distribution of observations p(y) than $q_{\theta_k}(x)$.

As long as we can

(i) generate samples from the posterior $q_{\theta_k}(x \mid y)$ and

(ii) train the prior $q_{\theta_{k+1}}(x)$ to fit these samples,

we can train any model $q_{ heta}(x)$ from observations, including DMs!

Moment Matching Posterior Sampling (MMPS)

To generate from p(x), DMs approximate the score $\nabla_{x_t} \log p(x_t)$ of a series of increasingly noisy distributions $p(x_t) = \int \mathcal{N}(x_t \mid \alpha_t x, \Sigma_t) p(x) \, \mathrm{d}x$. To sample from the posterior $p(x \mid y)$, we need to approximate

$$\overbrace{\nabla_{x_t} \log p(x_t \mid y)}^{\text{posterior score}} = \overbrace{\nabla_{x_t} \log p(x_t)}^{\text{prior score}} + \overbrace{\nabla_{x_t} \log p(y \mid x_t)}^{\text{likelihood score}}$$
(7)

For a linear Gaussian observation process $p(y \mid x) = \mathcal{N}(y \mid Ax, \Sigma_y)$, the approximation $p(x \mid x_t) \approx \mathcal{N}(x \mid \mathbb{E}[x \mid x_t], \mathbb{V}[x \mid x_t])$ leads to

$$\nabla_{x_t} \log p(y \mid x_t) \approx \nabla_{x_t} \log \mathcal{N}(y \mid A\mathbb{E}[x \mid x_t], \Sigma_y + A\mathbb{V}[x \mid x_t]A^{\top}) \\ \approx \nabla_{x_t} \mathbb{E}[x \mid x_t]^{\top} A^{\top} \underbrace{\left(\Sigma_y + A\mathbb{V}[x \mid x_t]A^{\top}\right)^{-1} (y - A\mathbb{E}[x \mid x_t])}_{\text{symmetric positive definite linear system}} \tag{8}$$

 $\mathbb{E}[x \mid x_t]$ and $\mathbb{V}[x \mid x_t]$ are linked to the score via Tweedie's formulae

$$\begin{split} \mathbb{E}[x \mid x_t] &= x_t + \Sigma_t \nabla_{\!\! x_t} \log p(x_t) \\ \mathbb{V}[x \mid x_t] &= \Sigma_t + \Sigma_t \nabla_{\!\! x_t}^2 \log p(x_t) \Sigma_t = \Sigma_t \nabla_{\!\! x_t}^\top \mathbb{E}[x \mid x_t] \end{split}$$

Instead of computing an expensive matrix inverse, we can solve the linear system in Eq. (8) with the **conjugate gradient** method.

(9)

x arXiv:2405.13712
francois-rozet/
diffusion-priors

Results

this

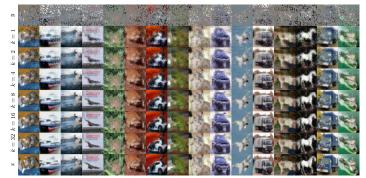


Figure 1. Samples from the posterior $q_{\theta_k}(x \mid y)$ along the EM iterations for the corrupted (75%) CIFAR-10 experiment. Samples become gradually more detailed and less noisy with iterations.

23)	Corruption	FID ↓	IS ↑		Corruption	$FID\downarrow$	IS ↑
(2023)	0.20	11.70	7.97	ILS	0.25	5.88	8.83
aras	0.40	18.85	7.45	OL	0.50	6.76	8.75
Dai	0.60	28.88	6.88		0.75	13.18	8.14

Table 1. Evaluation of final priors trained on corrupted CIFAR-10.

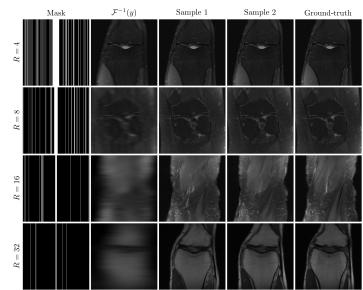


Figure 2. Accelerated MRI posterior samples using a diffusion prior trained from incomplete (R = 8) spectral observations only. Samples are detailed and varied, while remaining consistent with the observation.

$$y_{t} =
abla_{\!x_t} \log p(x_t) +$$
ervation process p