

All-in-One Image Coding for Joint Human-Machine Vision with Multi-Path Aggregation

Xu Zhang, Peiyao Guo, Ming Lu, Zhan Ma

Vision Lab, Nanjing University

vision.nju.edu.cn 2024/11/6 1

Background

 \mathcal{X}

- Easy to optimize
- High accuracy
	- Redundant bitstreams
- Redundant models **eg**

 χ

Enc.

Dec. 2

(b) Unified representation

 $'$ Dec. n

......

Task 2 Task n

Dec. 1

Task 1

- High accuracy
- Unified bitstream
- Redundant decoders \bullet

 χ

SCCT

 $\mathbf{\Theta}^{(k)}$

 h_a

 h_s

Background

- Existing unified approach: β-condition
- Pros:
	- Continuously Adjustable.
	- Supporting transitions between tasks.
	- Easily integrated into existing model frameworks.
- Cons:
	- Optimization is challenging, with variable hyperparams.
	- Balancing more tasks is difficult.
	- Existing work only considers two task objectives.

 g_a

 g_s

Con

| k1s1 ReLL

Conv

 $k3s1$

ReLU

Conv k1s1

Block

Bottleneck

Residual

Our Approach

- Built upon existing models (TinyLIC is used in our implementation).
- Minimal additional components (only MLPs), reducing storage and computation overhead.
- Simple and effective optimization strategy, beneficial for task expansion.
- Supports smooth transitions between tasks.

Training Strategy

- Stage 1:
	- Optimize the base model with the Main Path.
	- The optimization objectives are Eqs. (6) and (7).
- Stage 2:
	- Optimize only the Side Path and Predictor.
	- The optimization objective is Eq. (8).
	- For MSE optimization, the task loss only includes MSE Loss.
	- For vision task optimization, the task loss is defined as Eq. (9).

$$
\mathcal{L}_{\text{ratio}} = \frac{1}{S} \sum_{s=1}^{S} \left(\rho_{\text{enc}} - \frac{1}{H^{(s)} W^{(s)}} \sum_{h=1}^{H^{(s)}} \sum_{w=1}^{W^{(s)}} M^{(s)}(h, w) \right)^2, \tag{4}
$$

$$
\mathcal{L}_G = \mathbb{E}_{\hat{\boldsymbol{y}} \sim p_{\boldsymbol{y}}} [-\log(D(\hat{\boldsymbol{y}}, G(\hat{\boldsymbol{y}})))],
$$
\n(5)

$$
\mathcal{L}_D = \mathbb{E}_{\hat{\boldsymbol{y}} \sim p_{\boldsymbol{y}}} [-\log(1 - D(\hat{\boldsymbol{y}}, G(\hat{\boldsymbol{y}}))] + \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{x}}} [-\log D(E(\boldsymbol{x}), \boldsymbol{x})], \tag{6}
$$

$$
\mathcal{L}_{EGP} = \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{x}}} [\lambda_r^{(q)} r(\hat{\boldsymbol{y}}) + d(\boldsymbol{x}, \hat{\boldsymbol{x}})] + \lambda_G \mathcal{L}_G + \lambda_{\text{perc}} \mathcal{L}_{\text{perc}} + \lambda_{\text{ratio}} \mathcal{L}_{\text{ratio}}, \tag{7}
$$

$$
(\phi_{\text{side}}^*, \phi_{\text{pred}}^*) = \underset{\phi_{\text{side}}, \phi_{\text{pred}}}{\arg \min} \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{x}}} [\lambda_r^{(q)} r(\hat{\boldsymbol{y}})] + \lambda_{\text{task}} \mathcal{L}_{\text{task}} + \lambda_{\text{ratio}} \mathcal{L}_{\text{ratio}}, \tag{8}
$$

$$
\mathcal{L}_{\text{task}} = \text{CrossEntropy}(\text{ClsModel}(\text{Norm}(\hat{\boldsymbol{x}})), GT) + d(\boldsymbol{x}, \hat{\boldsymbol{x}}) + \lambda_{\text{perc}} \mathcal{L}_{\text{perc}}.
$$
\n(9)

Performance

Visualization

2024/11/6 **vision.nju.edu.cn** 7

Visualization

Visualization

Diving into MPA

Table 1: Effects of path complexity

Table 2: Cross-validations on path choices

MLP Type	$\varphi_{\rm{MSE}}$ $(BD-Rate \downarrow)$	φ_{cls} $(Acc. \uparrow)$	$\varphi_{\texttt{seg}}$	Task (Metric)	$\varphi_{\rm perc}$	$\varphi_{\rm{MSE}}$	φ_{cls}	$\varphi_{\texttt{seg}}$
				$\overline{\text{MSE (BD-Rate)}}$		49.61% 16.04%	32.81%	34.19%
Bottleneck	19.51%	76.72%	37.41%	Cls. $(Acc. \uparrow)$	76.66%	60.59%	76.77%	73.57%
Inv. Bottleneck	16.04%	77.16%	37.76%	Seg. (mIoU \uparrow)	36.17%	28.34%	35.34%	37.41%

Table 3: Ablations on encoder

Table 4: Comparison of complexity

	BD-Rate \downarrow	Models	#Param.	KFLOPs per pixel	Latency (ms)	
Components	against VTM	MRIC [1]	69.14M	1118.17	11.89	
Full MPA w/o Predictors $W/O \phi_{hq}$	16.04% 16.25% 17.05%	TinyLIC [2] $+$ MLPs + Predictors $+$ (S) & (A)	28.46M $+0.51M\sim+2.04M$ $+0.03M$ $+0$	439.29 -56.680 $+2.23$ $+0$	12.68 $-0.33 \sim +0$ $+0.09$ $+0.28$	
$W/O \phi_{la}$	17.18%	MPA	$29.00M \sim 30.53M$	$384.84 \rightarrow 441.52$	$12.72 \sim 13.05$	

2024/11/6 **vision.nju.edu.cn** 10 [1] E. Agustsson, et al. Multi-Realism Image Compression With a Conditional Generator. In CVPR, 2023. [2] M. Lu, et al. High-Efficiency Lossy Image Coding through Adaptive Neighborhood Information Aggregation. arXiv preprint arXiv:2204.11448, 2022.

Conclusion

- Key Contribution:
	- Introduces the Multi-Path Aggregation (MPA) method for unified image coding that supports both human and machine vision tasks.
- Advantages:
	- Achieves comparable performance to SOTA single-task models with reduced parameter and computational costs.
	- Supports flexible task expansion with minimal parameter fine-tuning.
- Performance Highlights:
	- Demonstrates strong rate-distortion and rate-perception performance.
	- Shows excellent results in machine vision tasks like classification and segmentation, achieving near full-tuning models.
- Applications and Future Work:
	- Suitable for multi-task scenarios that require simultaneous human viewing and machine analysis.
	- Future work can focus on joint multi-path optimization to further improve performance and reduce latency.

Thank you!

Xu Zhang, Peiyao Guo, Ming Lu, Zhan Ma

Vision Lab, Nanjing University