

All-in-One Image Coding for Joint Human-Machine Vision with Multi-Path Aggregation

Xu Zhang, Peiyao Guo, Ming Lu, Zhan Ma

Vision Lab, Nanjing University

vision.nju.edu.cn

2

Background

- High accuracy
 - Redundant bitstreams
- Redundant models

(b) Unified representation

х

Enc.

Dec.

Dec. 1

Task 1

Dec. n

.....

Task 2 Task n

- High accuracy
- Unified bitstream
- Redundant decoders

Background

- Existing unified approach: β-condition
- Pros:
 - Continuously Adjustable.
 - Supporting transitions between tasks.
 - Easily integrated into existing model frameworks.
- Cons:
 - Optimization is challenging, with variable hyperparams.
 - Balancing more tasks is difficult.
 - Existing work only considers two task objectives.

 g_a

 g_s

 $\Theta^{(\prime)}$

SCCI

 h_a

 h_s

Con

k1s1

ReLL Conv

k3s1

ReLU

Conv

k1s1

Block

Bottleneck

Residual

Our Approach

- Built upon existing models (TinyLIC is used in our implementation).
- Minimal additional components (only MLPs), reducing storage and computation overhead.
- Simple and effective optimization strategy, beneficial for task expansion.
- Supports smooth transitions between tasks.

Training Strategy

- Stage 1:
 - Optimize the base model with the Main Path.
 - The optimization objectives are Eqs. (6) and (7).
- Stage 2:
 - Optimize only the Side Path and Predictor.
 - The optimization objective is Eq. (8).
 - For MSE optimization, the task loss only includes MSE Loss.
 - For vision task optimization, the task loss is defined as Eq. (9).

$$\mathcal{L}_{\text{ratio}} = \frac{1}{S} \sum_{s=1}^{S} \left(\rho_{\text{enc}} - \frac{1}{H^{(s)} W^{(s)}} \sum_{h=1}^{H^{(s)}} \sum_{w=1}^{W^{(s)}} M^{(s)}(h, w) \right)^2, \tag{4}$$

$$\mathcal{L}_{G} = \mathbb{E}_{\hat{\boldsymbol{y}} \sim p_{\boldsymbol{y}}}[-\log(D(\hat{\boldsymbol{y}}, G(\hat{\boldsymbol{y}})))],$$
(5)

$$\mathcal{L}_D = \mathbb{E}_{\hat{\boldsymbol{y}} \sim p_{\boldsymbol{y}}} [-\log(1 - D(\hat{\boldsymbol{y}}, G(\hat{\boldsymbol{y}}))] + \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{x}}} [-\log D(E(\boldsymbol{x}), \boldsymbol{x})],$$
(6)

$$\mathcal{L}_{EGP} = \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{x}}} [\lambda_r^{(q)} r(\boldsymbol{\hat{y}}) + d(\boldsymbol{x}, \boldsymbol{\hat{x}})] + \lambda_G \mathcal{L}_G + \lambda_{\text{perc}} \mathcal{L}_{\text{perc}} + \lambda_{\text{ratio}} \mathcal{L}_{\text{ratio}},$$
(7)

$$(\phi_{\text{side}}^*, \phi_{\text{pred}}^*) = \arg\min_{\phi_{\text{side}}, \phi_{\text{pred}}} \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{x}}}[\lambda_r^{(q)} r(\boldsymbol{\hat{y}})] + \lambda_{\text{task}} \mathcal{L}_{\text{task}} + \lambda_{\text{ratio}} \mathcal{L}_{\text{ratio}},$$
(8)

$$\mathcal{L}_{\text{task}} = \text{CrossEntropy}(\text{ClsModel}(\text{Norm}(\hat{\boldsymbol{x}})), GT) + d(\boldsymbol{x}, \hat{\boldsymbol{x}}) + \lambda_{\text{perc}} \mathcal{L}_{\text{perc}}.$$
 (9)

Performance

Visualization

vision.nju.edu.cn

Visualization

Visualization

vision.nju.edu.cn

Diving into MPA

Table 1: Effects	of path	complexity
------------------	---------	------------

 Table 2: Cross-validations on path choices

MLP Type	ϕ_{MSE} (BD-Rate \downarrow)	$\phi_{ m cls}$ (Acc. \uparrow)	$\phi_{ m seg} \ ({ m mIoU}\uparrow)$	Task (Metric)	$\phi_{ m perc}$	ϕ_{MSE}	$\phi_{ m cls}$	$\phi_{ m seg}$
				$\overline{MSE (BD-Rate \downarrow)}$	49.61%	16.04%	32.81%	34.19%
Bottleneck	19.51%	76.72%	37.41%	Cls. (Acc. \uparrow)	76.66%	60.59%	76.77%	73.57%
Inv. Bottleneck	16.04%	77.16%	37.76%	Seg. (mIoU ↑)	36.17%	28.34%	35.34%	37.41%

Table 3: Ablations on encoder

 Table 4: Comparison of complexity

Components	BD-Rate ↓	Models	#Param.	KFLOPs per pixel	Latency (ms)
	against VTM	MRIC [1]	69.14M	1118.17	11.89
Full MPA w/o Predictors w/o ϕ_{hq}	16.04% 16.25% 17.05%	+ MLPs + Predictors + (S) & (A)	28.46M +0.51M~+2.04M +0.03M +0	439.29 -56.68~+0 +2.23 +0	12.68 -0.33 \sim +0 +0.09 +0.28
w/o ϕ_{lq}	17.18%	MPA	29.00M~30.53M	384.84~441.52	12.72~13.05

[1] E. Agustsson, et al. Multi-Realism Image Compression With a Conditional Generator. In CVPR, 2023.
 [2] M. Lu, et al. High-Efficiency Lossy Image Coding through Adaptive Neighborhood Information Aggregation. arXiv preprint arXiv:2204.11448, 2022.
 2024/11/6

Conclusion

- Key Contribution:
 - Introduces the Multi-Path Aggregation (MPA) method for unified image coding that supports both human and machine vision tasks.
- Advantages:
 - Achieves comparable performance to SOTA single-task models with reduced parameter and computational costs.
 - Supports flexible task expansion with minimal parameter fine-tuning.
- Performance Highlights:
 - Demonstrates strong rate-distortion and rate-perception performance.
 - Shows excellent results in machine vision tasks like classification and segmentation, achieving near full-tuning models.
- Applications and Future Work:
 - Suitable for multi-task scenarios that require simultaneous human viewing and machine analysis.
 - Future work can focus on joint multi-path optimization to further improve performance and reduce latency.

Thank you!

Xu Zhang, Peiyao Guo, Ming Lu, Zhan Ma

Vision Lab, Nanjing University