

Rethinking The Training And Evaluation of Rich-Context Layout-to-Image Generation

Jiaxin Cheng, Zixu Zhao, Tong He, Tianjun Xiao, Yicong Zhou, Zheng Zhang

Amazon Web Services Shanghai AI Lab

University of Macau

Layout-to-Image Generation

• Given layout bounding boxes and instance description, generating an image complies the layout and description

LayoutDiffuse: Adapting Foundational Diffusion Models for Layout-to-Image Generation GLIGEN: Open-Set Grounded Text-to-Image Generation

Rich-context Layout2image Generation

A silver and black stainless steel mug A yellow mug with white dots on it. A mug with horizontal red and white strip pattern

Rich-context: The description for each object is more complex and lengthier.

Desired Properties of L2I

- Flexibility: The model must accurately understand rich-context descriptions
- Locality: Generated object should be bounded within its layout bbox
- Completeness: All region should be treated equally when adding layout conditions, including background
- Collectiveness: all object should be considered for overlapping region

 x_{l+1}

Where/How to Insert Layout Information?

High-resolution image synthesis with latent diffusion models.

Regional Cross-Attention

- We partition the object regions according to their overlapping states, naming region reorganization. (Locality)
- We apply cross-attention between visual and textual tokens within each repartitioned region. (Flexibility)
- Overlapping region will cross-attend with grounding tokens of all objects within it. (Collectiveness)
- The background will attend with a learnable null-token. (Completeness)
- The grounding tokens are composed of textual tokens and location tokens. (For model to recognize overlapped objects with identical descriptions)

Training Setting

Loss function

$$L = E_{t,\varepsilon,x_0} [\left(\varepsilon - \varepsilon_{\theta}(x_t(x_0, t), t, l)\right)^2]$$
$$\varepsilon_{\theta}(x_t, t, l)$$

 α (α +)

Noisy image $q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I})$

Predicting the noise ε added on the image

Denoising model conditioned on the noisy image x_t , timestep t and layout information l

Dataset Generation

Recognizing

Locating

Labelling

Qwen-VL, object description

Recognize Anything, image tagging

living room, dog, blanket, carpet, couch, desk, furniture, pillow, plant, sit, wood floor, lamp

GroundingDINO, open-set object detection

Recognize Anything: A Strong Image Tagging Model

Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection

Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond

Rich-context Dataset

Synthetic rich-context dataset generation pipeline

Evaluation Metric for Rich-context L2I

Eliminating results (during evaluation) that do not align well with human perspective

- Conduct a user study for object-text alignment and layout fidelity
- Object size < 5% and >50% of image size not align well with human feedback

Performance Comparison

• Figure (a), our method shows better performance when the complexity or length of object caption increases

Better for complex and lengthy descriptions

Better performance-computation trade off

 Figure (b), our method has a better performancecomputation trade-off

Ablation Studies

Backbone	Dataset		Attention Module				
	Word/Phrase	Rich-context	SelfAttn GLIGEN	SelfAttn InstDiff	CrossAttn Ours	CropCLIP	SAMIoU
SDXL SDXL	\checkmark	\checkmark			\checkmark	25.40 29.79	86.76 88.10
SD1.5 SD1.5 SD1.5		\checkmark	\checkmark	\checkmark	\checkmark	25.56 28.36 28.94	82.72 85.58 86.91

- Word-level dataset trained L2I model can hardly generalize to the richcontext descriptions.
- The regional cross-attention module is more suitable for rich-context L2I than existing self-attention-based layout conditioning module.

Project page

Scan me!

Dataset

Evaluation

- A fine-tuned layout-to-image model established on foundational diffusion model
- Propose regional crossattention to improve the layoutto-image generation quality on rich-context descriptions
- A synthetic dataset curated with three large pre-trained multimodality models
- **Rich-context annotations**: the annotations are more diverse, complex and lengthy while align better with object
- **Propose two metrics** for richcontext object-text alignment and layout fidelity
- The proposed method performs better on complex and lengthy descriptions