

Self-supervised Transformation Learning for Equivariant Representations

Jaemyung Yu, Jaehyun Choi, Dong-Jae Lee, HyeongGwon Hong, Junmo Kim Korea Advanced Institute of Science and Technology (KAIST)

Self-supervised Learning of Visual Representation

SimCLR (ICML 2020)

source:

MAE (CVPR 2022)

Transformation (Augmentation) Invariant Representation

Transformation invariant representation

$$f(x) = f(t(x)) \quad \forall t \in T$$

Invariant learning

$$\min_{t} \mathbb{E}_{x,t}[\mathcal{L}_{\text{inv}}(x,t)]$$

$$\mathcal{L}_{inv}(x,t) = \mathcal{L}(f(x), f(t(x)))$$

x: image T: group of transformation

f: encoder \mathcal{L} : dissimilarity metric (e.g. InfoNCE loss)

Transformation Sensitive Information Matters

Color Information

in Flower Classification

Directional Information in Autonomous Driving

Transformation Equivariant Representation

Transformation equivariant representation

$$\exists \phi: T \times Y \to Y \quad \text{s.t.}$$

$$f(t(x)) = \phi(t, f(x)) \quad \forall t \in T$$

Equivariant learning (with transformation label)

$$\min_{f,\phi} \mathbb{E}_{x,t}[\mathcal{L}_{\text{equi}}(x,t)]$$

$$\mathcal{L}_{\text{equi}}(x,t) = \mathcal{L}(\phi(t,f(x)), f(t(x)))$$

Limitation of Transformation Label

Imperfect Transformation Label

hyperparamters of augmentations

Random cropping

Horizontal flipping

$$\omega^{\mathtt{flip}} = \mathbb{1}[\mathbf{v} \text{ is flipped}]$$

= 1

Color jittering

$$\begin{split} \omega^{\text{color}} &= (\lambda_{\text{bright}}, \lambda_{\text{contrast}}, \lambda_{\text{sat}}, \lambda_{\text{hue}}) \\ &= (0.3, 1.0, 0.8, 1.0) \end{split}$$

Gaussian blurring

$$ω$$
^{blur} = std. dev. of Gaussian kernel = 1.0

Complex Transformation with Unknown Structure

AugMix like augmentation, Complex combination, etc.

source:

AugMix

(ICLR 2020)

Transformation Representation

Equivariant learning with transformation label

Pairs of representations of original image and transformed image

$$y_t^x = f_T(f(x),\ f(t(x))) \in Y_T \quad \text{for } t \in T \text{ and } x \in X$$

$$\uparrow \\ \textit{implicit} \\ \textit{transformation representation}$$

Equivariant Learning without Transformation Label

Equivariant learning with transformation label

$$\min_{f,\phi} \mathbb{E}_{x,t}[\mathcal{L}_{\text{equi}}(x,t)] \quad \text{s.t.} \quad \mathcal{L}_{\text{equi}}(x,t) = \mathcal{L}(\phi(t,f(x)), \ f(t(x)))$$

$$y_t^x = f_T(f(x), \ f(t(x))) \in Y_T \quad \text{for } t \in T \text{ and } x \in X$$

$$\phi\left(y_t^{x'}, \ f(x)\right) = \phi\left(f_T\left(f\left(x'\right), f\left(t(x')\right)\right), \ f(x)\right) \quad \text{for } x \neq x' \in X$$

Equivariant learning without transformation representation

$$\min_{f, f_T, \phi} \mathbb{E}_{\underline{x \neq x'}, t} \left[\mathcal{L}_{\text{equi}}(x, x', t) \right] \qquad \text{prevent trivial solution}$$

$$f(t(x)) = \phi(f_T(f(x), f(t(x))), f(x))$$

$$\mathcal{L}_{\text{equi}}(x, x', t) = \mathcal{L} \left(\phi \left(y_t^{x'}, f(x) \right), f(t(x)) \right)$$

Self-supervised Transformation Learning (STL)

Image invariant transformation representation

$$y_t^x = y_t^{x'} \quad \forall x \neq x' \in X$$

$$y_t^x = f_T(f(x), f(t(x))) \in Y_T \text{ for } t \in T \text{ and } x \in X$$

Image invariant (transformation representation) learning

$$\min_{f, f_T} \mathbb{E}_{x \neq x', t} \left[\mathcal{L}_{\text{trans}} \left(x, x', t \right) \right] \quad \text{s.t.} \quad \mathcal{L}_{\text{trans}} \left(x, x', t \right) = \mathcal{L} \left(y_t^x, y_t^{x'} \right)$$

Aligned Transformed Batch

Batch size of image = Batch size of transformation

Transformation Equivariant Learning with STL

Dissimilarity metric as
$$\mathcal{L}_{\text{InfoNCE}}\left(y, y^{+}; g, \tau\right) = -\log \frac{\exp\left(\sin\left(g(y), g(y^{+})\right) / \tau\right)}{\sum_{y' \neq y} \exp\left(\sin\left(g(y), g(y')\right) / \tau\right)}$$

$$\mathcal{L}_{\text{inv}}(x,t) = \mathcal{L}_{\text{InfoNCE}}\big(f(x),f(t(x));\ g_{\text{inv}},\tau_{\text{inv}}\big),$$

$$\mathcal{L}_{\text{equi}}\left(x,x',t\right) = \mathcal{L}_{\text{InfoNCE}}\big(\phi\big(y_t^{x'},f(x)\big),\ f(t(x));\ g_{\text{equi}},\tau_{\text{equi}}\big),$$

$$\mathcal{L}_{\text{trans}}(x,x',t) = \mathcal{L}_{\text{InfoNCE}}\big(y_t^x,\ y_t^{x'};\ g_{\text{trans}},\tau_{\text{trans}}\big).$$

Overall Objective

$$\min_{f,f_T,\phi} \mathbb{E}_{x \neq x',t} \Big[\lambda_{\text{inv}} \mathcal{L}_{\text{inv}}(x,t) + \lambda_{\text{equi}} \mathcal{L}_{\text{equi}}(x,x',t) + \lambda_{\text{trans}} \mathcal{L}_{\text{trans}}(x,x',t) \Big]$$

Overall Framework of STL

Image Representation Evaluation (Out-domain)

How generalized the learned representation is

Table 2: Out-domain Classification. Evaluation of representation generalizability on the out-domain down-stream classification tasks. Linear evaluation accuracy (%) is reported for ResNet-50 pretrained on ImageNet100.

Method	CIFAR10	CIFAR100	Food	MIT67	Pets	Flowers	Caltech101	Cars	Aircraft	DTD	SUN397	Mean
Invariant Learning:												
SimCLR	84.24	64.15	59.00	54.78	58.95	91.58	79.32	27.07	36.00	66.01	42.77	60.35
with AugMix	86.90	67.70	62.90	57.24	63.75	93.16	83.67	32.37	43.17	67.93	46.15	64.09
Implicit Equivariant Le	earning:											I
E-SSL	85.09	65.74	60.91	56.64	61.00	92.31	80.77	28.84	38.04	66.38	43.49	61.75
AugSelf	85.55	66.09	62.63	57.16	62.61	93.41	82.33	30.71	40.35	68.51	45.24	63.14
Explicit Equivariant Le	earning:											ľ
SEN	80.68	56.53	52.50	46.79	45.27	79.24	73.42	14.41	27.51	57.45	33.51	51.57
EquiMod	82.89	61.36	56.38	52.84	52.68	87.42	79.17	22.02	34.62	64.10	39.86	57.58
SIE	81.72	58.49	54.04	49.70	47.21	84.37	74.39	16.71	31.68	59.20	35.29	53.89
STL (Ours)	86.55	66.84	64.32	56.64	65.00	94.51	81.83	35.44	45.42	64.68	44.69	64.18
with AugMix (Ours)	87.19	67.70	66.12	59.70	67.10	94.87	84.61	38.48	46.14	69.57	45.75	66.11

Image Representation Evaluation (In-domain)

Whether the learned representation causes trade-offs in the in-domain

Table 3: **In-domain Classification.** Evaluation of representation on indomain classification task. Linear evaluation accuracy (%) is reported for ResNet-50 pretrained on ImageNet100.

Method	In-domain
Invariant Learning: SimCLR SimCLR with AugMix	81.20 80.54
Implicit Equivariant Learning E-SSL AugSelf	82.10 81.08
Explicit Equivariant Learning SEN EquiMod SIE STL (Ours) STL with AugMix (Ours)	76.32 80.70 79.40 81.10 81.64

Image Representation Evaluation (Object Detection)

How generalized the learned representation is

Table 4: **Object Detection.** Evaluation of representation generalizability on a downstream object detection task. Average precision is reported for ImageNet100-pretrained ResNet-50 fine-tuned on VOC07+12.

Method	AP_{all}	AP ₅₀	AP ₇₅
SimCLR	45.67	72.50	47.83
AugSelf	45.99	72.46	49.23
EquiMod	51.55	78.03	56.17
STL (Ours)	51.95	78.34	56.96
with AugMix (Ours)	52.70	78.81	57.76

Transformation Representation Evaluation (Quantitative)

How the learned equivariant representation reflects the actual transformation

Table 5: Transformation Prediction. Evaluation of transformation representation from learned representation pairs. Regression tasks use MSE loss, and transformation type classification uses accuracy.

	Re	gression (Classification (↑)
Method	Crop	Color	All	Trans. Type
SimCLR	0.02	0.13	0.08	68.54
AugSelf	0.01	0.04	0.03	88.49
EquiMod	0.01	0.07	0.04	82.20
STL (Ours)	0.01	0.03	0.02	93.67

Transformation Representation Evaluation (Qualitative)

How the learned transformation representation reflects the actual transformation

Inter-relationship of transformations

Crop Satur. Bright. Hue Contr.

UMAP Visualization of transformation representations by type

Intra-relationship of transformations

UMAP Visualization of transformation representations by intensity

Equivariant Transformation Evaluation

How the equivariant transformation reflects the actual trans. in the repr. space

Table 6: **Transformation Equivariance.** Evaluation of the equivariant transformation. Mean Reciprocal Rank (MRR), Hit@k (H@k), and Precision (PRE) metrics on various transformations (crop and color jitter).

Method		Crop				Co	lor		All				
	MRR(†)	H@1(†)	H@5(†)	PRE(↓)	MRR(†)	H@1(†)	H@5(†)	PRE(↓)	MRR(†)	H@1(†)	H@5(†)	PRE(↓)	
SEN	0.34	0.15	0.58	0.14	0.18	0.05	0.31	3.69	0.22	0.08	0.37	2.70	
EquiMod	0.37	0.17	0.60	0.13	0.16	0.05	0.28	3.72	0.22	0.09	0.36	2.72	
SIE	0.33	0.14	0.55	0.33	0.17	0.05	0.28	3.70	0.21	0.08	0.35	2.74	
w/o L _{trans} (Ours)	0.31	0.18	0.46	0.69	0.27	0.13	0.40	3.37	0.29	0.16	0.43	2.50	
STL (Ours)	0.37	0.22	0.54	0.64	0.33	0.18	0.52	2.76	0.36	0.21	0.53	2.07	

Prediction Retrieval Error (PRE)

The differences b/w the parameters of the equi. trans. and the closest actual trans.

$$\mathrm{PRE} = |\theta_{\mathrm{eq}} - \theta_{\mathrm{real}}|$$

Mean Reciprocal Rank (MRR)

The avg. reciprocal rank of the actual transformed repr. among the closest retrieved reprs.

$$ext{MRR} = rac{1}{|Q|} \sum_{i=1}^{|Q|} rac{1}{ ext{rank}_i}$$

Hit Rate at k (H@k)

The proportion of cases where the actual transformed repr ranks within the top $\boldsymbol{k}.$

$$ext{H@k} = rac{1}{|Q|} \sum_{i=1}^{|Q|} 1(ext{rank}_i \leq k)$$

Equivariant Transformation

(a) EquiMod

(b) STL

UMAP Visualization of functional weights

Crop

Satur.

Bright.

Hue

Contr.

Ablation Study for Modules

Table 7: Loss Function Ablation Study. Image classification and transformation prediction results of ResNet-18 pretrained on STL10 with selective inclusion of loss terms for invariant learning (\mathcal{L}_{inv}), equivariant learning (\mathcal{L}_{equi}), and self-supervised transformation learning (\mathcal{L}_{trans}). For image classification, in-domain accuracy (%) and the average accuracy (%) across multiple out-domain datasets are shown. For transformation prediction, MSE is used for regression of crop and color transformations, and accuracy (%) is used for transformation type classification.

	L	oss Functi	ons	Image Cl	assification	Transformation Prediction			
Method	$\mathcal{L}_{ ext{inv}}$	$\mathcal{L}_{ ext{equi}}$	\mathcal{L}_{trans}	In-domain (†)	Out-domain (†)	Regression (\downarrow)	Classification (†)		
Only Invariance	√	-	-	84.74	43.11	0.08	68.54		
Only Equivariance	-	\checkmark	-	83.53	49.99	0.02	93.54		
STL w/o \mathcal{L}_{inv}	_	√	√	81.86	48.62	0.02	93.54		
STL w/o $\mathcal{L}_{ ext{equi}}$	\checkmark	-	\checkmark	80.99	47.30	0.02	93.92		
STL w/o \mathcal{L}_{trans}	\checkmark	\checkmark	-	85.11	48.49	0.08	69.57		
STL	✓	✓	✓	84.83	49.97	0.02	93.67		

Ablation Study for Transformations (Augmentation)

Table 8: **Transformation Ablation Study.** Linear evaluation accuracy (%) of ResNet-18 pretrained on STL10 with various transformations used as equivariance targets.

Trans.	Method	CIFAR10	CIFAR100	Food	MIT67	Pets	Flowers	Caltech101	Cars	Aircraft	DTD	SUN397	Mean
	AugSelf	82.89	54.92	33.19	39.70	44.40	64.96	67.63	15.58	25.38	41.86	27.89	45.31
crop	EquiMod	83.76	55.33	32.01	37.76	41.65	63.00	66.28	14.18	24.96	41.54	26.46	44.27
	STL	84.94	59.12	35.15	39.40	45.35	68.38	70.78	17.96	33.00	41.86	28.71	47.70
	AugSelf	84.33	57.47	36.57	39.40	46.80	71.18	67.91	17.03	27.12	43.83	29.37	47.36
color	EquiMod	82.22	51.77	31.21	34.18	39.57	61.17	62.07	12.51	21.36	39.52	23.48	41.73
	STL	84.16	58.71	38.49	41.34	45.90	74.36	68.48	17.31	27.12	46.54	31.17	48.51
crop	AugSelf	84.26	57.78	36.82	40.30	45.46	73.38	68.11	17.22	27.63	45.96	30.38	47.94
+	EquiMod	81.35	51.86	33.91	37.76	41.92	66.18	67.38	15.22	25.80	42.50	26.70	44.60
color	STL	85.37	61.05	39.41	41.27	46.58	76.43	71.47	19.04	30.75	46.17	32.13	49.97
	AugSelf	81.76	54.90	36.51	40.90	46.17	71.43	70.14	18.63	30.96	45.21	30.40	47.91
all	EquiMod	84.42	56.65	34.23	37.99	42.98	67.16	68.41	15.18	26.91	43.94	26.97	45.89
	STL	84.96	58.91	36.71	42.09	46.25	72.41	71.01	17.72	28.44	43.83	30.99	48.48

Ablation Study for Base Invariant Learning Models

Table 9: **Base Invariant Learning Model Ablation Study.** Linear evaluation accuracy (%) of ResNet-18 pretrained on STL10 with various base models for invariant learning.

Base	Method	CIFAR10	CIFAR100	Food	MIT67	Pets	Flowers	Caltech101	Cars	Aircraft	DTD	SUN397	Mean
	-	85.55	59.80	37.54	42.61	50.61	73.50	72.46	23.02	31.71	44.95	31.63	50.31
DVOI	AugSelf	87.01	64.84	43.14	47.24	52.49	78.88	75.42	25.47	37.02	48.03	34.94	54.04
BYOL	EquiMod	84.64	56.55	32.74	39.18	44.64	66.54	68.37	15.47	24.27	42.71	26.96	45.64
	STL	86.88	65.63	42.98	46.42	52.33	79.61	76.04	28.68	39.21	46.44	34.57	54.44
	-	83.26	55.69	34.32	40.52	46.52	66.06	69.13	17.15	27.99	41.91	28.97	46.50
C:C:	AugSelf	85.44	62.20	39.78	43.43	46.77	77.90	71.72	18.67	33.30	45.53	32.65	50.67
SimSiam	EquiMod	81.20	51.23	31.21	37.99	40.53	63.98	64.19	12.22	22.11	40.69	25.76	42.83
	STL	85.20	62.58	40.15	44.03	48.65	76.68	71.37	22.42	32.37	45.59	32.19	51.02
	-	81.67	51.68	27.79	33.13	39.60	57.63	62.17	11.53	19.47	37.13	23.43	40.48
Barlow	AugSelf	82.46	51.71	27.83	35.75	39.33	58.24	61.87	11.88	19.77	37.29	23.31	40.86
Twins	EquiMod	81.57	52.15	30.00	36.79	38.70	62.64	63.22	11.80	20.55	40.21	24.92	42.05
	STL	83.74	56.73	32.69	38.36	42.65	67.28	68.09	16.24	24.33	41.97	28.53	45.51

Thank You

https://github.com/jaemyung-u/stl