

Self-supervised Transformation Learning for Equivariant Representations

Jaemyung Yu, Jaehyun Choi, Dong-Jae Lee, HyeongGwon Hong, Junmo Kim Korea Advanced Institute of Science and Technology (KAIST)

Self-supervised Learning of Visual Representation

SimCLR (ICML 2020) MAE (CVPR 2022)

source: Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." *International conference on machine learning*. PMLR, 2020. 2 He, Kaiming, et al. "Masked autoencoders are scalable vision learners." *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2022.

Transformation (Augmentation) Invariant Representation

Transformation invariant representation

 $f(x) = f(t(x)) \quad \forall t \in T$

Invariant learning

 $\min_{f} \mathbb{E}_{x,t}[\mathcal{L}_{\text{inv}}(x,t)]$

 $\mathcal{L}_{inv}(x,t) = \mathcal{L}(f(x), f(t(x)))$

x: image $T:$ group of transformation

f: encoder \mathcal{L} : dissimilarity metric (e.g. InfoNCE loss)

Transformation Sensitive Information Matters

Color Information in Flower Classification

Directional Information

in Autonomous Driving

HFlip

Transformation Equivariant Representation

Transformation equivariant representation

 $\exists \phi: T \times Y \to Y$ s.t.

 $f(t(x)) = \phi(t, f(x)) \quad \forall t \in T$

Equivariant learning (with transformation label)

$$
\min_{f,\phi} \mathbb{E}_{x,t}[\mathcal{L}_{\text{equi}}(x,t)]
$$

$$
\mathcal{L}_{\text{equi}}(x,t) = \mathcal{L}(\phi(t,f(x)),\ f(t(x)))
$$

Limitation of Transformation Label

source: Lee, Hankook, et al. "Improving transferability of representations via augmentation-aware self-supervision." *Advances in Neural Information Processing Systems* 34 (2021): 17710-17722. 6 Hendrycks, Dan, et al. "Augmix: A simple data processing method to improve robustness and uncertainty." *arXiv preprint arXiv:1912.02781* (2019).

Transformation Representation

Equivariant learning **with** transformation label

$$
\min_{f,\phi} \mathbb{E}_{x,t}[\mathcal{L}_{\text{equi}}(x,t)] \quad \text{s.t.} \quad \mathcal{L}_{\text{equi}}(x,t) = \mathcal{L}(\phi(t,f(x)),\ f(t(x)))
$$
\n
$$
\uparrow
$$
\n*explicit*\n*transformation label*

Pairs of representations of original image and transformed image

$$
y_t^x = f_T(f(x), f(t(x))) \in Y_T \quad \text{for } t \in T \text{ and } x \in X
$$

\n
$$
\uparrow
$$

\n
$$
\text{implicit}
$$

\ntransformation representation

Equivariant Learning without Transformation Label

Equivariant learning **with** transformation label

$$
\min_{f,\phi} \mathbb{E}_{x,t}[\mathcal{L}_{\text{equi}}(x,t)] \quad \text{s.t.} \quad \mathcal{L}_{\text{equi}}(x,t) = \mathcal{L}(\phi(t,f(x)),\ f(t(x)))
$$
\n
$$
\underbrace{y_t^x = f_T(f(x),\ f(t(x))) \in Y_T \quad \text{for } t \in T \text{ and } x \in X}
$$
\n
$$
\phi\left(y_t^{x'},\ f(x)\right) = \phi\left(f_T\left(f\left(x'\right),f\left(t(x'\right)\right)\right),\ f(x)\right) \quad \text{for } x \neq x' \in X
$$

Equivariant learning **without** transformation representation

$$
\min_{f, f_T, \phi} \mathbb{E}_{\substack{x \neq x', t}} \left[\mathcal{L}_{\text{equi}}(x, x', t) \right] \qquad \text{prevent trivial solution}
$$
\n
$$
\mathcal{L}_{\text{equi}}(x, x', t) = \mathcal{L} \left(\phi \left(y_t^{x'}, f(x) \right), f(t(x)) \right)
$$
\n
$$
f(t(x)) = \phi(f_T(f(x), f(t(x))), f(x))
$$

Self-supervised Transformation Learning (STL)

Image invariant transformation representation

$$
y_t^x = y_t^{x'} \quad \forall x \neq x' \in X
$$

$$
y_t^x = f_T(f(x),\ f(t(x))) \in Y_T \quad \text{for } t \in T \text{ and } x \in X
$$

Image invariant (transformation representation) learning

$$
\min_{f, f_T} \mathbb{E}_{x \neq x', t} \left[\mathcal{L}_{\text{trans}} \left(x, x', t \right) \right] \quad \text{s.t.} \quad \mathcal{L}_{\text{trans}} \left(x, x', t \right) = \mathcal{L} \left(y_t^x, y_t^{x'} \right)
$$

Aligned Transformed Batch

Batch size of image = Batch size of transformation

Transformation Equivariant Learning with STL

Dissimilarity metric as $\mathcal{L}_{\text{InfoNCE}}(y, y^+; g, \tau) = -\log \frac{\exp(\sin(g(y), g(y^+))/\tau)}{\sum_{y' \neq y} \exp(\sin(g(y), g(y'))/\tau)}$

$$
\mathcal{L}_{inv}(x,t) = \mathcal{L}_{InfoNCE}(f(x), f(t(x)); g_{inv}, \tau_{inv}),
$$
\n
$$
\mathcal{L}_{equi}(x, x', t) = \mathcal{L}_{InfoNCE}(\phi(y_t^{x'}, f(x)), f(t(x)); g_{equi}, \tau_{equi}),
$$
\n
$$
\mathcal{L}_{trans}(x, x', t) = \mathcal{L}_{InfoNCE}(y_t^x, y_t^{x'}; g_{trans}, \tau_{trans}).
$$

Overall Objective $\min_{f, f_T, \phi} \mathbb{E}_{x \neq x', t} \Big[\lambda_{\text{inv}} \mathcal{L}_{\text{inv}}(x, t) + \lambda_{\text{equi}} \mathcal{L}_{\text{equi}}(x, x', t) + \lambda_{\text{trans}} \mathcal{L}_{\text{trans}}(x, x', t) \Big]$

Overall Framework of STL

 Y_T

 \bigcap

O.

Image Representation Evaluation (Out-domain)

How generalized the learned representation is

Table 2: Out-domain Classification. Evaluation of representation generalizability on the out-domain downstream classification tasks. Linear evaluation accuracy $(\%)$ is reported for ResNet-50 pretrained on ImageNet100.

Image Representation Evaluation (In-domain)

Whether the learned representation causes trade-offs in the in-domain

Table 3: In-domain Classification.

Evaluation of representation on indomain classification task. Linear evaluation accuracy $(\%)$ is reported for ResNet-50 pretrained on ImageNet100.

Image Representation Evaluation (Object Detection)

How generalized the learned representation is

Table 4: Object Detection. Evaluation of representation generalizability on a downstream object detection task. Average precision is reported for ImageNet100pretrained ResNet-50 fine-tuned on VOC07+12.

Transformation Representation Evaluation (Quantitative)

How the learned equivariant representation reflects the actual transformation

Table 5: Transformation Prediction. Evaluation of transformation representation from learned represetation pairs. Regression tasks use MSE loss, and transformation type classification uses accuracy.

Transformation Representation Evaluation (Qualitative)

How the learned transformation representation reflects the actual transformation

Inter-relationship of transformations Intra-relationship of transformations

UMAP Visualization of transformation representations by type

UMAP Visualization of transformation representations by intensity

Equivariant Transformation Evaluation

How the equivariant transformation reflects the actual trans. in the repr. space

Table 6: Transformation Equivariance. Evaluation of the equivariant transformation. Mean Reciprocal Rank (MRR) , Hit@k $(H@k)$, and Precision (PRE) metrics on various transformations (crop and color jitter).

Prediction Retrieval Error (PRE)

The differences b/w the parameters of the equi. trans. and the closest actual trans.

$$
\mathrm{PRE} = |\theta_\mathrm{eq} - \theta_\mathrm{real}|
$$

Mean Reciprocal Rank (MRR)

The avg. reciprocal rank of the actual transformed repr. among the closest retrieved reprs.

$$
\text{MRR} = \frac{1}{|Q|}\sum_{i=1}^{|Q|}\frac{1}{\text{rank}_i}
$$

Hit Rate at k (H@k)

The proportion of cases where the actual transformed repr ranks within the top k.

$$
\text{H@k} = \frac{1}{|Q|}\sum_{i=1}^{|Q|} \text{1}(\text{rank}_i \leq k)
$$

Equivariant Transformation

UMAP Visualization of functional weights

Ablation Study for Modules

Table 7: Loss Function Ablation Study. Image classification and transformation prediction results of ResNet-18 pretrained on STL10 with selective inclusion of loss terms for invariant learning (\mathcal{L}_{inv}) , equivariant learning ($\mathcal{L}_{\text{equi}}$), and self-supervised transformation learning ($\mathcal{L}_{\text{trans}}$). For image classification, in-domain accuracy (%) and the average accuracy $(\%)$ across multiple out-domain datasets are shown. For transformation prediction, MSE is used for regression of crop and color transformations, and accuracy $(\%)$ is used for transformation type classification.

Ablation Study for Transformations (Augmentation)

Table 8: **Transformation Ablation Study.** Linear evaluation accuracy $(\%)$ of ResNet-18 pretrained on STL10 with various transformations used as equivariance targets.

Ablation Study for Base Invariant Learning Models

Table 9: Base Invariant Learning Model Ablation Study. Linear evaluation accuracy $(\%)$ of ResNet-18 pretrained on STL10 with various base models for invariant learning.

Thank You

https://github.com/jaemyung-u/stl