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Pearson's r

◼ proposed in the late 19th century (Pearson, 1896) 

◼ has been one of the main tools for scientists and engineers to 

study bivariate dependence during the 20th century

◼ still goes strong in the 21st century (Puccetti, 2022)

It has been, and probably still is, the most used measure for statistical associations, 

and generally accepted as the measure of dependence, not only in statistics, but also 

in most applications of natural and social sciences

(Tjøstheim, Otneim, and Støve, 2022).
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Widespread belief: Pearson’s r is only for linear dependence

◼ Introduction to the theory of statistics, 1974: Both the covariance and the correlation 

coefficient of random variables X and Y are measures of a linear relationship of X and Y

◼ All of statistics: a concise course statistical inference, 2004: If X and Y are random 

variables, then the covariance and correlation between X and Y measure how strong the 

linear relationship is between X and Y.

◼ Theoretical statistics: topics for a core course 2010: The covariance between two 

variables might be viewed as a measure of the linear association between the two 

variables

◼ Probability and statistics, 2012: The covariance and correlation are attempts to 

measure that dependence, but they only capture a particular type of dependence, namely 

linear dependence
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The widespread belief is a myth

◼ van den Heuvel and Zhan (2022):  Pearson’s r should not be ruled out 

a priori for measuring nonlinear monotone dependence

◼ This is the issue that our paper aims to address!

MethodsMotivation Results

Although this potential has been recognized, the 

specific approach to using Pearson’s r for

accurate measurement of nonlinear monotone 

dependence remains unresolved.
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Different bounds lead to different capture ranges

For covariance, we have three bounds:

◼ 1st bound: (Pearson’s r) 𝑟 𝑋, 𝑌 =
cov 𝑋,𝑌

var 𝑋 var 𝑌
→ linear: 𝑌 = 𝛼𝑋 + 𝛽

◼ 2nd bound: (Additivity Coefficient) 𝑟+ 𝑋, 𝑌 =
cov 𝑋,𝑌

1

2
var 𝑋 +var 𝑌

→Additive: 𝑌 = ±𝑋 + 𝛽

◼ 3rd bound: (Concordance Coefficient) 𝑟= 𝑋, 𝑌 =
cov 𝑋,𝑌
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2
var 𝑋 +var 𝑌 + ത𝑋−ത𝑌 2

→ Identical: 𝑌 = ±𝑋

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )21
varco var

2
v ,

1
var vvar va arr

2
X X Y X YX Y YX Y + + + − 

By now, all the efforts have only led to looser bounds and measures with narrower capture ranges.

Could we possibly explore breakthroughs by approaching the problem from the opposite direction, 

aiming to achieve a tighter bound and consequently, devise a new measure with a broader capture 

range? YES!
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New inequality tighter than Cauchy-Schwarz inequality
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For random variables X and Y , we have

The equality holds if and only if 𝑃 𝑌 = 𝛼𝑋 = 1

For samples x and y we have

The equality holds if and only if x and y are

linearly dependent, i.e., y = ax for some constant a.

Cauchy–Schwarz inequality

For random variables X and Y , we have

The equality on the left holds if and only if X and 

Y are monotone dependent.

For samples x and y we have

The equality on the left holds if and only if x and y

are monotone dependent.

Our inequality
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The proposed Rearrangement Correlation

◼ The Rearrangement Correlation of random variables X and Y is defined as:

◼ The Rearrangement Correlation of samples x and y is defined as:
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The proposed Rearrangement Correlation

◼ Covariance inequality series, correlation coefficients and their capture ranges
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Results

A toy example

◼ Compared to Spearman’s 𝜌, 𝑟# has a higher resolution and is more accurate
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Obviously, y1 and x behaves exactly in the same way, with their values getting small and small step by step. 

The behavior of y2, y3, y4, and y5 are becoming more and more different from that of x. 

However, the 𝜌 values are all the same for y2, y3 and y4. In contrast, the 𝑟# values can reveal all these 

differences exactly.
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Results

Performance of different measures 

◼ in 50 simulated scenarios
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Results

Performance of different measures 

◼ in 5 Real-life Scenarios
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Conclusion

We may draw the conclusion that:
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◼Pearson’s r is undoubtedly the gold measure for linear

dependence.

◼Now, it might be the gold measure also for nonlinear

monotone dependence, if adjusted.
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Thank you


