
Faster Neighborhood Attention
Reducing the O(n2) Cost of Self Attention at the Threadblock Level

Ali Hassani 1 Wen-mei Hwu 2,3 Humphrey Shi 1,3

1Georgia Tech, 2NVIDIA, 3UIUC .

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

1 / 25

Self Attention

Any-to-any interaction between all n input
tokens/pixels.

Context

Query

2 / 25

Self Attention

Any-to-any interaction between all n input
tokens/pixels.

Context

Query

2 / 25

Self Attention

Any-to-any interaction between all n input
tokens/pixels.

Context

Query

2 / 25

Self Attention

Any-to-any interaction between all n input
tokens/pixels.

Context

Query

2 / 25

Self Attention

Any-to-any interaction between all n input
tokens/pixels.

Attention weights, P ∈ Rn×n, which gives us the
notorious O(n2) time (and space) complexity.

Context

Query

2 / 25

Self Attention

Any-to-any interaction between all n input
tokens/pixels.

Attention weights, P ∈ Rn×n, which gives us the
notorious O(n2) time (and space) complexity.

As n grows, This problem will be bounded by:

1. Memory capacity (assuming P is stored in
global memory)

2. Memory bandwidth (worst when P is stored in
global memory)

3. Computational power

Context

Query

2 / 25

Self Attention

Any-to-any interaction between all n input
tokens/pixels.

Attention weights, P ∈ Rn×n, which gives us the
notorious O(n2) time (and space) complexity.

As n grows, This problem will be bounded by:

1. Memory capacity (assuming P is stored in
global memory)

2. Memory bandwidth (worst when P is stored in
global memory)

3. Computational power

Context

Query

2 / 25

Self Attention

Any-to-any interaction between all n input
tokens/pixels.

Attention weights, P ∈ Rn×n, which gives us the
notorious O(n2) time (and space) complexity.

As n grows, This problem will be bounded by:

1. Memory capacity (assuming P is stored in
global memory)

2. Memory bandwidth (worst when P is stored in
global memory)

3. Computational power

Context

Query

2 / 25

Self Attention

Any-to-any interaction between all n input
tokens/pixels.

Attention weights, P ∈ Rn×n, which gives us the
notorious O(n2) time (and space) complexity.

As n grows, This problem will be bounded by:

1. Memory capacity (assuming P is stored in
global memory)

2. Memory bandwidth (worst when P is stored in
global memory)

3. Computational power

Context

Query

2 / 25

Solution: Fused Attention

What if we don’t store attention weights, P , in
global memory in the first place?

FlashAttention

Memory Hierarchy with
Bandwidth & Memory Size

Attention on GPT-2

FlashAttentionPyTorch

Ti
m

e
(m

s)

Matmul

Mask

Softmax

Dropout

Matmul

Fused
Kernel

Q: N x d V: N X d

KT: d x N

Q
KT : N

 x
 N

sm(QKT)V: N x d

Outer Loop

Copy Block to SRAM

Copy

O
uter Loop

Copy

In
ne

r L
oo

p

Compute Block
on SRAM

Output to HBM

Inner Loop

Inner Loop

Outer Loop

GPU
SRAM

GPU
HBM

Main Memory
(CPU DRAM)

SRAM: 19 TB/s (20 MB)

HBM: 1.5 TB/s (40 GB)

DRAM: 12.8 GB/s
 (>1 TB)

0

5

10

15

Source: Flash Attention [1].

3 / 25

Background: fused multi-headed attention (FMHA)

In 2021, NVIDIA prototyped a fused attention kernel (FMHA) for GPT inference.

Key limitation: softmax reduction blocks second matrix multiply.

Online softmax [2] showed how softmax can be computed partially, and reduced into exact full
softmax.

This was a major achievement, opening the door for distributed and highly parallel softmax
implementations.

In 2022, and inspired by the Apex FMHA, Dao et al. [1] proposed Flash Attention; a fused
attention kernel that accelerated existing BMM-style attention implementations, a key
component of which was online softmax.

4 / 25

Background: fused multi-headed attention (FMHA)

In 2021, NVIDIA prototyped a fused attention kernel (FMHA) for GPT inference.

Key limitation: softmax reduction blocks second matrix multiply.

Online softmax [2] showed how softmax can be computed partially, and reduced into exact full
softmax.

This was a major achievement, opening the door for distributed and highly parallel softmax
implementations.

In 2022, and inspired by the Apex FMHA, Dao et al. [1] proposed Flash Attention; a fused
attention kernel that accelerated existing BMM-style attention implementations, a key
component of which was online softmax.

4 / 25

Background: fused multi-headed attention (FMHA)

In 2021, NVIDIA prototyped a fused attention kernel (FMHA) for GPT inference.

Key limitation: softmax reduction blocks second matrix multiply.

Online softmax [2] showed how softmax can be computed partially, and reduced into exact full
softmax.

This was a major achievement, opening the door for distributed and highly parallel softmax
implementations.

In 2022, and inspired by the Apex FMHA, Dao et al. [1] proposed Flash Attention; a fused
attention kernel that accelerated existing BMM-style attention implementations, a key
component of which was online softmax.

4 / 25

Background: fused multi-headed attention (FMHA)

In 2021, NVIDIA prototyped a fused attention kernel (FMHA) for GPT inference.

Key limitation: softmax reduction blocks second matrix multiply.

Online softmax [2] showed how softmax can be computed partially, and reduced into exact full
softmax.

This was a major achievement, opening the door for distributed and highly parallel softmax
implementations.

In 2022, and inspired by the Apex FMHA, Dao et al. [1] proposed Flash Attention; a fused
attention kernel that accelerated existing BMM-style attention implementations, a key
component of which was online softmax.

4 / 25

Background: fused multi-headed attention (FMHA)

In 2021, NVIDIA prototyped a fused attention kernel (FMHA) for GPT inference.

Key limitation: softmax reduction blocks second matrix multiply.

Online softmax [2] showed how softmax can be computed partially, and reduced into exact full
softmax.

This was a major achievement, opening the door for distributed and highly parallel softmax
implementations.

In 2022, and inspired by the Apex FMHA, Dao et al. [1] proposed Flash Attention; a fused
attention kernel that accelerated existing BMM-style attention implementations, a key
component of which was online softmax.

4 / 25

Background: fused multi-headed attention (FMHA)

Fused attention can fix two key bottlenecks at the
same time: attention is no longer bound by memory
bandwidth or memory capacity at scale.

FlashAttention

Memory Hierarchy with
Bandwidth & Memory Size

Attention on GPT-2

FlashAttentionPyTorch

Ti
m

e
(m

s)

Matmul

Mask

Softmax

Dropout

Matmul

Fused
Kernel

Q: N x d V: N X d

KT: d x N

Q
KT : N

 x
 N

sm(QKT)V: N x d

Outer Loop

Copy Block to SRAM

Copy

O
uter Loop

Copy

In
ne

r L
oo

p

Compute Block
on SRAM

Output to HBM

Inner Loop

Inner Loop

Outer Loop

GPU
SRAM

GPU
HBM

Main Memory
(CPU DRAM)

SRAM: 19 TB/s (20 MB)

HBM: 1.5 TB/s (40 GB)

DRAM: 12.8 GB/s
 (>1 TB)

0

5

10

15

Source: Flash Attention [1].

5 / 25

Background: fused multi-headed attention (FMHA)

Fused attention can fix two key bottlenecks at the
same time: attention is no longer bound by memory
bandwidth or memory capacity at scale.

Fused attention kernels operating with FP8
precision have already exceeded the petaFLOP/s
threshold on Hopper, and can achieve up to 60% of
peak FLOP/s [3, 4].

FlashAttention

Memory Hierarchy with
Bandwidth & Memory Size

Attention on GPT-2

FlashAttentionPyTorch

Ti
m

e
(m

s)

Matmul

Mask

Softmax

Dropout

Matmul

Fused
Kernel

Q: N x d V: N X d

KT: d x N

Q
KT : N

 x
 N

sm(QKT)V: N x d

Outer Loop

Copy Block to SRAM

Copy

O
uter Loop

Copy

In
ne

r L
oo

p

Compute Block
on SRAM

Output to HBM

Inner Loop

Inner Loop

Outer Loop

GPU
SRAM

GPU
HBM

Main Memory
(CPU DRAM)

SRAM: 19 TB/s (20 MB)

HBM: 1.5 TB/s (40 GB)

DRAM: 12.8 GB/s
 (>1 TB)

0

5

10

15

Source: Flash Attention [1].

5 / 25

Background: Local attention

Parallel to fused attention, some worked on
sparse/restricted self-attention patterns.

Context

Query

6 / 25

Background: Local attention

Parallel to fused attention, some worked on
sparse/restricted self-attention patterns.

Among them was Neighborhood Attention [5, 6].

Context

Query

6 / 25

Background: Neighborhood attention

Every token/pixel attends to only those that are
within a local neighborhood,

Context

Query

7 / 25

Background: Neighborhood attention

Every token/pixel attends to only those that are
within a local neighborhood, which results in a
linear complexity of O(nℓ), where ℓ is the
neighborhood size.

Context

Query

7 / 25

Background: Neighborhood attention

Every token/pixel attends to only those that are
within a local neighborhood, which results in a
linear complexity of O(nℓ), where ℓ is the
neighborhood size.

In many cases, this results in a sliding-window-like
effect, similar to that in convolutional layers.

Context

Query

7 / 25

Background: Neighborhood attention

Every token/pixel attends to only those that are
within a local neighborhood, which results in a
linear complexity of O(nℓ), where ℓ is the
neighborhood size.

In many cases, this results in a sliding-window-like
effect, similar to that in convolutional layers.

Context

Query

7 / 25

Background: Neighborhood attention

Neighborhood attention additionally can be dilated,
similar to convolution.

Context

Query

8 / 25

Background: Neighborhood attention

Neighborhood attention additionally can be dilated,
similar to convolution.

Context

Query

8 / 25

Background: Neighborhood attention

Neighborhood attention additionally can be dilated,
similar to convolution.

Context

Query

8 / 25

Background: Neighborhood attention

Neighborhood attention additionally can be dilated,
similar to convolution.

Context

Query

8 / 25

Background: Neighborhood attention

This creates a spectrum of possible attention patterns between linear projection and self
attention.

9 / 25

Background: Neighborhood attention

Neighborhood attention is a general matrix-vector
multiplication (GEMV) problem.

Context

Query

10 / 25

Background: Neighborhood attention

Neighborhood attention is a general matrix-vector
multiplication (GEMV) problem.

This is because context windows between different
tokens are rarely identical.

Context

Query

10 / 25

Background: Neighborhood attention

Neighborhood attention is a general matrix-vector
multiplication (GEMV) problem.

This is because context windows between different
tokens are rarely identical.

GEMVs are usually bound by memory bandwidth,
cannot target Tensor Cores.

Context

Query

10 / 25

Motivation

NATTEN , neighborhood attention extension, only offers the naive kernels.

1. Naive kernels are not performance-optimized, can’t target Tensor Cores.

2. Fused attention much better than unfused kernels in most cases.

11 / 25

Motivation

NATTEN , neighborhood attention extension, only offers the naive kernels.

1. Naive kernels are not performance-optimized, can’t target Tensor Cores.

2. Fused attention much better than unfused kernels in most cases.

11 / 25

Motivation

NATTEN , neighborhood attention extension, only offers the naive kernels.

1. Naive kernels are not performance-optimized, can’t target Tensor Cores.

2. Fused attention much better than unfused kernels in most cases.

11 / 25

Attention is back-to-back GEMMs
GEMM: General Matrix-Matrix Multiplication

Consider single-batch single-head self-attention, O = Attention(Q,K,V), in which three
operands Q,K ∈ Rn×d, and V ∈ Rn×d′ are mapped to output O ∈ Rn×d′ as follows:

1. Attention mode (n): represents sequence,

2. Dimension mode (d and d′): head dimension.

12 / 25

Attention is back-to-back GEMMs
GEMM: General Matrix-Matrix Multiplication

Consider single-batch single-head self-attention, O = Attention(Q,K,V), in which three
operands Q,K ∈ Rn×d, and V ∈ Rn×d′ are mapped to output O ∈ Rn×d′ as follows:

Oij =

n∑
k=1

n
softmax

k=1
(

d∑
l=1

QilKkl)Vkj (1)

1. Attention mode (n): represents sequence,

2. Dimension mode (d and d′): head dimension.

12 / 25

Attention is back-to-back GEMMs
GEMM: General Matrix-Matrix Multiplication

Consider single-batch single-head self-attention, O = Attention(Q,K,V), in which three
operands Q,K ∈ Rn×d, and V ∈ Rn×d′ are mapped to output O ∈ Rn×d′ as follows:

Oij =

n∑
k=1

n
softmax

k=1
(

d∑
l=1

QilKkl︸ ︷︷ ︸
matmul

)Vkj (1)

1. Attention mode (n): represents sequence,

2. Dimension mode (d and d′): head dimension.

12 / 25

Attention is back-to-back GEMMs
GEMM: General Matrix-Matrix Multiplication

Consider single-batch single-head self-attention, O = Attention(Q,K,V), in which three
operands Q,K ∈ Rn×d, and V ∈ Rn×d′ are mapped to output O ∈ Rn×d′ as follows:

Oij =

n∑
k=1

n
softmax

k=1
(

d∑
l=1

QilKkl︸ ︷︷ ︸
matmul

)Vkj

︸ ︷︷ ︸
matmul

(1)

1. Attention mode (n): represents sequence,

2. Dimension mode (d and d′): head dimension.

12 / 25

Attention is back-to-back GEMMs
GEMM: General Matrix-Matrix Multiplication

Consider single-batch single-head self-attention, O = Attention(Q,K,V), in which three
operands Q,K ∈ Rn×d, and V ∈ Rn×d′ are mapped to output O ∈ Rn×d′ as follows:

Oij =

n∑
k=1

n
softmax

k=1
(

d∑
l=1

QilKkl︸ ︷︷ ︸
matmul

)Vkj

︸ ︷︷ ︸
matmul

(1)

All 4 operands are matrices, and their modes are summarized below:

1. Attention mode (n): represents sequence,

2. Dimension mode (d and d′): head dimension.

12 / 25

Attention is back-to-back GEMMs
GEMM: General Matrix-Matrix Multiplication

Consider single-batch single-head self-attention, O = Attention(Q,K,V), in which three
operands Q,K ∈ Rn×d, and V ∈ Rn×d′ are mapped to output O ∈ Rn×d′ as follows:

Oij =

n∑
k=1

n
softmax

k=1
(

d∑
l=1

QilKkl︸ ︷︷ ︸
matmul

)Vkj

︸ ︷︷ ︸
matmul

(1)

All 4 operands are matrices, and their modes are summarized below:

1. Attention mode (n): represents sequence,

2. Dimension mode (d and d′): head dimension.

12 / 25

Attention is back-to-back GEMMs
GEMM: General Matrix-Matrix Multiplication

Consider single-batch single-head self-attention, O = Attention(Q,K,V), in which three
operands Q,K ∈ Rn×d, and V ∈ Rn×d′ are mapped to output O ∈ Rn×d′ as follows:

Oij =

n∑
k=1

n
softmax

k=1
(

d∑
l=1

QilKkl︸ ︷︷ ︸
matmul

)Vkj

︸ ︷︷ ︸
matmul

(1)

All 4 operands are matrices, and their modes are summarized below:

1. Attention mode (n): represents sequence,

2. Dimension mode (d and d′): head dimension.

12 / 25

Neighborhood Attention is a GEMV problem

Neighborhood attention on the other hand is a matrix-vector multiplication problem:

13 / 25

Neighborhood Attention is a GEMV problem

Neighborhood attention on the other hand is a matrix-vector multiplication problem:

Oij =
∑

k∈ρκ(i)

softmax
k∈ρκ(i)

(

d∑
l=1

QilKkl)Vkj (2)

where ρκ(i) is a set of all attention mode coordinates in [1, n] that are neighbors of i, given
window size κ.

13 / 25

Neighborhood Attention is a GEMV problem

Neighborhood attention on the other hand is a matrix-vector multiplication problem:

Oij =
∑

k∈ρκ(i)

softmax
k∈ρκ(i)

(

d∑
l=1

QilKkl)Vkj (2)

where ρκ(i) is a set of all attention mode coordinates in [1, n] that are neighbors of i, given
window size κ.

For any given i, j ∈ [1, n], i ̸= j, we can’t assume ρ(i) = ρ(j). Therefore, the two
matrix-matrix multiplications become matrix-vector multiplication problems.

13 / 25

Neighborhood attention as a GEMM

Neighborhood function (assuming no dilation, and window size κ), ρκ(.), has a special
property:

14 / 25

Neighborhood attention as a GEMM

Neighborhood function (assuming no dilation, and window size κ), ρκ(.), has a special
property:

∀i ∈ [1, n], |ρκ(i) ∩ ρκ(i+ 1)| ∈ {κ, κ− 1}

14 / 25

Neighborhood attention as a GEMM

Neighborhood function (assuming no dilation, and window size κ), ρκ(.), has a special
property:

∀i ∈ [1, n], |ρκ(i) ∩ ρκ(i+ 1)| ∈ {κ, κ− 1}

In other words, query tokens close to each other overlap greatly in their neighborhoods.

14 / 25

Neighborhood attention as a GEMM

Neighborhood function (assuming no dilation, and window size κ), ρκ(.), has a special
property:

∀i ∈ [1, n], |ρκ(i) ∩ ρκ(i+ 1)| ∈ {κ, κ− 1}

In other words, query tokens close to each other overlap greatly in their neighborhoods.

This means we can simply define ρκ(.) as an implicit attention mask fused into the
implementation.

14 / 25

Neighborhood attention as a GEMM

Neighborhood function (assuming no dilation, and window size κ), ρκ(.), has a special
property:

∀i ∈ [1, n], |ρκ(i) ∩ ρκ(i+ 1)| ∈ {κ, κ− 1}

In other words, query tokens close to each other overlap greatly in their neighborhoods.

This means we can simply define ρκ(.) as an implicit attention mask fused into the
implementation.

GEMMs on massively parallel hardware like GPUs are computed in tiles. Tiles that only
produce masked attention weights can be skipped entirely, saving compute!

14 / 25

Neighborhood attention as a GEMM

Neighborhood function (assuming no dilation, and window size κ), ρκ(.), has a special
property:

∀i ∈ [1, n], |ρκ(i) ∩ ρκ(i+ 1)| ∈ {κ, κ− 1}

In other words, query tokens close to each other overlap greatly in their neighborhoods.

This means we can simply define ρκ(.) as an implicit attention mask fused into the
implementation.

GEMMs on massively parallel hardware like GPUs are computed in tiles. Tiles that only
produce masked attention weights can be skipped entirely, saving compute!

(This is how Mistral’s sliding window attention was implemented [7].)

14 / 25

But what about 2-D and 3-D?

Neighborhood attention was originally focused on vision and not language, and therefore has
typically focused on 2-D and 3-D spaces.

In 2-D and 3-D spaces, masking based on coordinates is still possible, but the sparse
computation pattern won’t save nearly as much computation without redefining attention for
2-D and 3-D spaces.

15 / 25

But what about 2-D and 3-D?

Neighborhood attention was originally focused on vision and not language, and therefore has
typically focused on 2-D and 3-D spaces.

In 2-D and 3-D spaces, masking based on coordinates is still possible, but the sparse
computation pattern won’t save nearly as much computation without redefining attention for
2-D and 3-D spaces.

15 / 25

2-D Attention is back-to-back GETTs!
GETT: General Tensor-Tensor Contraction

Consider 2-D self-attention, O = Attention(Q,K,V), in which three operands
Q,K ∈ Rh×w×d, and V ∈ Rh×w×d′ are mapped to output O ∈ Rh×w×d′ .

1. Attention mode (h× w): now assumes a 2-D layout,

2. Dimension mode (d and d′): unchanged.

16 / 25

2-D Attention is back-to-back GETTs!
GETT: General Tensor-Tensor Contraction

Consider 2-D self-attention, O = Attention(Q,K,V), in which three operands
Q,K ∈ Rh×w×d, and V ∈ Rh×w×d′ are mapped to output O ∈ Rh×w×d′ .

All 4 operands are now rank-3 tensors, and their modes are summarized below:

1. Attention mode (h× w): now assumes a 2-D layout,

2. Dimension mode (d and d′): unchanged.

16 / 25

2-D Attention is back-to-back GETTs!
GETT: General Tensor-Tensor Contraction

Consider 2-D self-attention, O = Attention(Q,K,V), in which three operands
Q,K ∈ Rh×w×d, and V ∈ Rh×w×d′ are mapped to output O ∈ Rh×w×d′ .

All 4 operands are now rank-3 tensors, and their modes are summarized below:

1. Attention mode (h× w): now assumes a 2-D layout,

2. Dimension mode (d and d′): unchanged.

16 / 25

2-D Attention is back-to-back GETTs!
GETT: General Tensor-Tensor Contraction

Consider 2-D self-attention, O = Attention(Q,K,V), in which three operands
Q,K ∈ Rh×w×d, and V ∈ Rh×w×d′ are mapped to output O ∈ Rh×w×d′ .

All 4 operands are now rank-3 tensors, and their modes are summarized below:

1. Attention mode (h× w): now assumes a 2-D layout,

2. Dimension mode (d and d′): unchanged.

16 / 25

2-D Attention is back-to-back GETTs!
GETT: General Tensor-Tensor Contraction

Consider 2-D self-attention, O = Attention(Q,K,V), in which three operands
Q,K ∈ Rh×w×d, and V ∈ Rh×w×d′ are mapped to output O ∈ Rh×w×d′ .

All 4 operands are now rank-3 tensors, and their modes are summarized below:

1. Attention mode (h× w): now assumes a 2-D layout,

2. Dimension mode (d and d′): unchanged.

Note: this is unnecessary if you’re only doing bi-directional self-attention. No masking, No
compute to save.

16 / 25

Neighborhood attention as a GEMM/GETT

Th × Tw × d

T ′
h × T ′

w × d

kh × kw × d

Q

K

GEMM output ThTw × T ′
hT ′

w

Fla
tte

ne
dQ

til
e

T
h
T

w
×

d

Flattened K (sub-)tile T ′
hT ′

w × d
Th × Tw × khkw

A

Select
&

Scatter

global memory shared memory / register file global memory

1. Modify tiling and predication to “convert” GEMM into GETT and maximize sparsity,

2. Fuse neighborhood attention masking as a scatter/gather operation.

17 / 25

Neighborhood attention as a GEMM/GETT

Th × Tw × d

T ′
h × T ′

w × d

kh × kw × d

Q

K

GEMM output ThTw × T ′
hT ′

w

Fla
tte

ne
dQ

til
e

T
h
T

w
×

d

Flattened K (sub-)tile T ′
hT ′

w × d
Th × Tw × khkw

A

Select
&

Scatter

global memory shared memory / register file global memory

1. Modify tiling and predication to “convert” GEMM into GETT and maximize sparsity,

2. Fuse neighborhood attention masking as a scatter/gather operation.

17 / 25

Neighborhood attention as a GEMM/GETT

Th × Tw × d

T ′
h × T ′

w × d

kh × kw × d

Q

K

GEMM output ThTw × T ′
hT ′

w

Fla
tte

ne
dQ

til
e

T
h
T

w
×

d

Flattened K (sub-)tile T ′
hT ′

w × d
Th × Tw × khkw

A

Select
&

Scatter

global memory shared memory / register file global memory

1. Modify tiling and predication to “convert” GEMM into GETT and maximize sparsity,

2. Fuse neighborhood attention masking as a scatter/gather operation.
17 / 25

Neighborhood attention as a GEMM/GETT

Th × Tw × d

T ′
h × T ′

w × d

kh × kw × d

Q

K

GEMM output ThTw × T ′
hT ′

w

Fla
tte

ne
dQ

til
e

T
h
T

w
×

d

Flattened K (sub-)tile T ′
hT ′

w × d
Th × Tw × khkw

A

Select
&

Scatter

global memory shared memory / register file global memory

1. Modify tiling and predication to “convert” GEMM into GETT and maximize sparsity,
software predication is expensive!

17 / 25

Neighborhood attention as a GEMM/GETT

Th × Tw × d

T ′
h × T ′

w × d

kh × kw × d

Q

K

GEMM output ThTw × T ′
hT ′

w

Fla
tte

ne
dQ

til
e

T
h
T

w
×

d

Flattened K (sub-)tile T ′
hT ′

w × d
Th × Tw × khkw

A

Select
&

Scatter

global memory shared memory / register file global memory

2. Fuse neighborhood attention masking as a scatter/gather operation.
breaks GEMM pipelining in lower precision

17 / 25

GEMM-based neighborhood attention performance

NA-1D NA-2D

200%

400%

600%

Baseline

548 %

193%

Forward pass only (FP16)

Sp
ee
du

p(
%
)

NA-1D NA-2D

502 %

92%

Forward pass + backward pass (FP16)

Naive
GEMM NA

1-D requires no change to predication, has simpler scatter/gather logic.

2-D suffers from predication and scatter/gather logic.

18 / 25

GEMM-based neighborhood attention performance

NA-1D NA-2D

200%

400%

600%

Baseline

548 %

193%

Forward pass only (FP16)

Sp
ee
du

p(
%
)

NA-1D NA-2D

502 %

92%

Forward pass + backward pass (FP16)

Naive
GEMM NA

1-D requires no change to predication, has simpler scatter/gather logic.

2-D suffers from predication and scatter/gather logic.

18 / 25

GEMM-based neighborhood attention performance

NA-1D NA-2D

200%

400%

600%

Baseline

548 %

193%

Forward pass only (FP16)

Sp
ee
du

p(
%
)

NA-1D NA-2D

502 %

92%

Forward pass + backward pass (FP16)

Naive
GEMM NA

1-D requires no change to predication, has simpler scatter/gather logic.

2-D suffers from predication and scatter/gather logic.
18 / 25

Fused neighborhood attention?

Other than being bound by memory bandwidth, all unfused neighborhood attention kernels are
greatly limited by the scatter/gather operation.

However, scatter/gather is not required if we keep attention weights in local memory!

19 / 25

Fused neighborhood attention?

Other than being bound by memory bandwidth, all unfused neighborhood attention kernels are
greatly limited by the scatter/gather operation.

However, scatter/gather is not required if we keep attention weights in local memory!

19 / 25

Fused neighborhood attention
Fused back-to-back GETTs!

Q K/V

Attention weights

NAmasking
+

partial softmax

Fla
tte

ne
dQ

til
e

FlattenedK sub-tile

Flattened V sub-tile

Output

global memory shared memory / register file global memory

20 / 25

Fused neighborhood attention

Q K/V

Attention weights

NAmasking
+

partial softmax

Fla
tte

ne
dQ

til
e

FlattenedK sub-tile

Flattened V sub-tile

Output

global memory shared memory / register file global memory

1. (Almost) constant global memory requirement (regardless of window size),

2. Scales up lower precision performance,

3. Defines causal masking, and allows different parameters (window size, dilation, causality)
per dimension.

20 / 25

Fused neighborhood attention

Q K/V

Attention weights

NAmasking
+

partial softmax

Fla
tte

ne
dQ

til
e

FlattenedK sub-tile

Flattened V sub-tile

Output

global memory shared memory / register file global memory

1. (Almost) constant global memory requirement (regardless of window size),

2. Scales up lower precision performance,

3. Defines causal masking, and allows different parameters (window size, dilation, causality)
per dimension.

20 / 25

Fused neighborhood attention

Q K/V

Attention weights

NAmasking
+

partial softmax

Fla
tte

ne
dQ

til
e

FlattenedK sub-tile

Flattened V sub-tile

Output

global memory shared memory / register file global memory

1. (Almost) constant global memory requirement (regardless of window size),

2. Scales up lower precision performance,

3. Defines causal masking, and allows different parameters (window size, dilation, causality)
per dimension.

20 / 25

Fused neighborhood attention: op-level performance

NA-1D NA-2D NA-3D

200%

400%

600%

800%

1000%

1200%

1400%

1600%

1800%

Baseline

548 %

1,759 %

193%

958%

1,135 %

Forward pass only (FP16)

Sp
ee
du

p(
%
)

NA-1D NA-2D NA-3D

502 %

844%

92%

385% 447%

Forward pass + backward pass (FP16)

Naive
GEMM NA
Fused NA

Relative performance improvement on Ampere (A100 PCIe).

21 / 25

Implementation

All of our implementations were done using NVIDIA’s CUTLASS framework (2.X API).

Fused neighborhood attention was based on xFormers’ FMHA kernel, and supports all NVIDIA
architectures since Maxwell and up to and including Ampere.

All of them are already available through NATTEN , just pip install natten or refer to
https://shi-labs.com/natten.

22 / 25

https://shi-labs.com/natten

Implementation

All of our implementations were done using NVIDIA’s CUTLASS framework (2.X API).

Fused neighborhood attention was based on xFormers’ FMHA kernel, and supports all NVIDIA
architectures since Maxwell and up to and including Ampere.

All of them are already available through NATTEN , just pip install natten or refer to
https://shi-labs.com/natten.

22 / 25

https://shi-labs.com/natten

Implementation

All of our implementations were done using NVIDIA’s CUTLASS framework (2.X API).

Fused neighborhood attention was based on xFormers’ FMHA kernel, and supports all NVIDIA
architectures since Maxwell and up to and including Ampere.

All of them are already available through NATTEN , just pip install natten or refer to
https://shi-labs.com/natten.

22 / 25

https://shi-labs.com/natten

References I

T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast and memory-efficient exact
attention with io-awareness,” in Advances in Neural Information Processing Systems (NeurIPS), 2022.

M. Milakov and N. Gimelshein, “Online normalizer calculation for softmax,” arXiv preprint
arXiv:1805.02867, 2018.

H. Blog, “Petaflops inference era: 1 pflops attention, and preliminary end-to-end results,”
https://medium.com/p/21f682cf2ed1, 2024.

J. Shah, G. Bikshandi, Y. Zhang, V. Thakkar, P. Ramani, and T. Dao, “Flashattention-3: Fast and
accurate attention with asynchrony and low-precision,” arXiv preprint arXiv:2407.08608, 2024.

A. Hassani, S. Walton, J. Li, S. Li, and H. Shi, “Neighborhood attention transformer,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

A. Hassani and H. Shi, “Dilated neighborhood attention transformer,” arXiv preprint arXiv:2209.15001,
2022.

23 / 25

https://medium.com/p/21f682cf2ed1

References II

A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. d. l. Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier et al., “Mistral 7b,” arXiv preprint arXiv:2310.06825, 2023.

24 / 25

Thank you for your Attention.

25 / 25

	Background
	Methodology

