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Introduction

Two Learning Tasks of Student Cognitive Modeling
T1: estimate students’ cognitive levels on knowledge concepts (cognitive diagnosis).
T2: predict the exercise performance they have never done before.
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Figure: A schematic illustration of the student cognitive modeling problem.

• Left: A set of exercises with the expert-labeled knowledge concepts.
• Middle: A student’s binary-value responses with missing values that are input to the
modeling.

• Right: Two learning tasks as the output of the modeling. 1/14



Related Work and Challenges

Previous approaches have differed along two dimensions:

Methods Pros & Cons

Cognitive diagnosis models Good in T1, but may trigger cascading errors in T2.
Data mining methods Can perform well in T2, but the students’ knowledge levels are unknown.

Main Challenges

• The ground truth of students’ knowledge proficiency is unknown (could not observe).

• How to frame the two learning tasks as the building blocks of an optimization framework to
reduce the cascading errors?

Key Ideas

• We leverage themonotonicity to sidestep the issue of unknown knowledge proficiency.

• We use the autoencodermechanism to meet the requirement of the monotonic constraint.
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Motivations and Framework Overview

We propose the autoencoder-like nonnegativematrix co-factorization (AE-NMCF) framework.
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Figure: The end-to-end pipeline of AE-NMCF.

• The inputs are the students’ partial responses on exercises (X) and the knowledge-exercise
relations (Q).

• The encoder targets the specification of students’ knowledge proficiency vectors.

• The decoder reconstructs the students’ response to the exercises via the specified
knowledge proficiency.
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Model Formulation - Problem Statement

Given students St = {Stm}Mm=1 and exercises Ex = {Exn}Nn=1, all the students’
responses are recorded in a binary scoring matrixX ∈ RN×M.

Also, suppose that there is a set of related knowledge concepts Kc = {Kck}Kk=1,
we have a question matrix (Q-matrix)Q ∈ RN×K that maps each exercise Exn to a
set of knowledge concepts.

Table: An example of a scoring matrix (the left half) and a Q-matrix (the right side)

Exercises
Students Knowledge concepts

St1 St2 St3 Kc1 Kc2 Kc3

Ex1 1 ? 1 0 1 1
Ex2 ? 0 ? 1 0 1
Ex3 ? 1 0 1 0 0
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Model Formulation - Encoder

UsingX andQ, the encoder gets the feature matrices for exercise, students, and
knowledge concepts, respectively: E ∈ RN×T,U ∈ RT×M, andV ∈ RT×K, as

min
B,E,U,V

∥W⊙ (X− EU)∥2F + ∥Q⊙ (B− EV)∥2F

s.t. B ≥ 0,E ≥ 0,U ≥ 0,V ≥ 0.
(1)

We introduce B ∈ RN×K to quantify the knowledge-exercise linkage strength.

In problem 1,X andQ share the matrix E, which project the two nonnegative
vectorsU:m andV:k into the new basis E. Hence, we specify the students’
knowledge proficiency via the matrixA ∈ RK×M.
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Model Formulation - Decoder

We introduce the exercise Exn’s difficulty level µn, andM = [µ1, µ2, · · · , µN]⊤.
UsingA, B, andM, the decoder is

min
Bn:,A:m,µn∀n,m

− ℓ+
γ

2

N∑
n=1

∥Bn:∥22. (2)

ℓ is a likelihood function:

ℓ =
∑

(n,m)∈Ωobs

log
{
Φ(Bn:A:m + µn)

Xnm [1− Φ(Bn:A:m + µn)]
(1−Xnm)

}
Φ(x) is a standard inverse link function, we choose the probit function as

Φ(x) =
∫ x

−∞
N (t)dt = 1√

2π

∫ x

−∞
e−t2/2dt.
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Model Formulation - Objective Function

By combining the encoder and the decoder components, we useOAF to denote
the objective function of AE-NMCF. The optimization problem is given as

min
B,E,U,V,M

OAF = −ℓ+ ∥W⊙ (X− EU)∥2F + ∥Q⊙ (B− EV)∥2F +
γ

2

N∑
n=1

∥Bn:∥22,

s.t. B ≥ 0,E ≥ 0,U ≥ 0,V ≥ 0.

In this problem, the negative log-likelihood term ℓ is convex; while the second
and third terms are convex in either B only, E only,U only, orV only.

Since the nonnegative constraints on B,E,U,V, and the blocks of variables
{Bn:}Nn=1 and {A:m}Mm=1, we apply the projected gradient method via a block
coordinate descent (PG-BCD) approach.
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Model Solution - First-order Method

Considering second-order methods do not scale well to high-dimensional
problems, we build our algorithm on first-order methods. For example, for Bn::

B(l+1)
n: ←

[
B(l)
n: − η

(l)
Bn:
∇O(l)

AF(Bn:)
]
+
, (3)

where [x]+ = max(ϵ, x) ensures the nonnegativity. The gradient∇OAF(Bn:) is

−
∑
m

{
Dnm[Xnm − Φ(∆nm)]U⊤

:mV
}
+ 2[Qn:⊙Bn: −Qn:⊙(En:V)] + γBn:;

where∆nm = Bn:V⊤U:m + µn, andDnm is given by

Dnm =
N (∆nm)

Φ(∆nm)[1− Φ(∆nm)]
.
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Model Solution - Lipschitz Constant Step Size

In Eq. (3), a key issue is choosing the appropriate η(l)Bn:
, we determine η(l)Bn:

by the
Lipschitz constant to enable efficient solution, and set η(l) = 1/L, where L is the
Lipschitz constant of∇f.

For Bn:, we establish an upper bound of the l2-norm of the difference between
the gradients at two arbitrary points y and z for∇OAF(Bn:) as

∥∇OAF(y)−∇OAF(z)∥2 ≤

Lpσ2
1(U⊤V) + 2

√√√√ K∑
k=1

Q2
nk + γ


︸ ︷︷ ︸

Lipschitz constant

∥y− z∥2,

where Lp = 1 is the scalar Lipschitz constant of the probit function, and σ1(X)
denotes the largest singular value of the matrixX.
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Experiments - Data sets and Baselines

We use real-world students’ response data with different sparsities and knowledge-exercise
relations, which cover diversified academic subjects, as shown in Table 2.

Table: The statistics of data sets

Statistics Data Set

FrcSub Junyi-s Quanlang-s SLP-Bio-s SLP-His-s SLP-Eng

# Student 536 1,091 50 100 1057 360
# Exercise 20 9 107 129 326 362
# Knowledge concept 8 9 14 7 14 19
Subject Math Math Math Biology History English
Relations many-to-many one-to-one one-to-many one-to-many one-to-many one-to-many
Sparsity 0% 75.03% 68.67% 54.92% 84.28% 96.92%

The baselines include data mining approaches and cognitive diagnosis models.

• Datamining approaches: NMF [1],MCF [2], GNMF [3],NMMF [4], and SNMCF [5].

• Cognitive diagnosis models: DINA [6], DIRT [7], DeepCDF [8], and QRCDM [9]

The evaluation metrics are (a) ACC and RMSE for student performance prediction; and (b) KRC (rc)
for knowledge proficiency estimation.
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Experiments - Overall Performance
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Figure: Model comparison in balancing the two learning tasks.

Results

• The closer to the upper right corner with a larger bubble size, the better the balance achieved.

• AE-NMCF is well above the model average (indicated by dash lines) on all data sets, which
achieves the best balance between prediction accuracy and diagnostic ability and works with
multiple relation cases.
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Experiments - Case Study

We present the diagnostic results for case students on Quanlang-s, compared with the advanced
baseline SNMCF.

0.2 0.6
1.0

0.0 0.6
0.9

0.0 0.6
0.9

(a) St50 (46.67%) (b) St33 (66.36%) (c) St42 (84.62%)

Kc1

Kc2

Kc3
Kc4Kc5

Kc6

Kc7

Kc8

Kc9

Kc10
Kc11 Kc12

Kc13

Kc14

Kc1

Kc2

Kc3
Kc4Kc5

Kc6

Kc7

Kc8

Kc9

Kc10
Kc11 Kc12

Kc13

Kc14

AE-NMCF SNMCF AE-NMCF SNMCFAE-NMCF SNMCF

Kc1

Kc2

Kc3
Kc4Kc5

Kc6

Kc7

Kc8

Kc9

Kc10
Kc11 Kc12

Kc13

Kc14

Figure: Diagnosis results of three case students between AE-NMCF and SNMCF.

Results

• The radar charts measure the three students’ knowledge proficiency, their answer accuracy
rates (the ratio of correctly answering all exercises) are in the parentheses.

• Intuitively, the proficiency levels of St42 should be the highest, and St50 is at the lowest level.

• SNMCF gives an extreme estimation, instead, AE-NMCF gives reasonable results.
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Lipschitz Search v.s. Armijo Search

We compare the step-size search based on Lipschitz constant with the one based on the “Armijo”
rule.
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Figure: #iterations vs. objective values for the Lipschitz search and Armijo search.

Results

• The Armijo search at first quickly decreases the objective function value but slows down in
sequence, which takes more time to converge.

• The Lipschitz search achieves the fastest convergencewhilemaintaining a relatively small ob-
jective function value.
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Conclusion and Future Work

Conclusion

• We study student cognitive modeling from a data mining perspective, in which students’
knowledge proficiency estimation is our primary concern.

• We introduce AE-NMCF for improved student cognitive modeling, which provides an end-to-
end and data-driven way of specifying and assessing students’ understanding of a set of
knowledge concepts.

• To learn the model, we present a novel projected gradient method based on block coordinate
descent with Lipschitz constants, for which theoretical convergence is guaranteed.

• AE-NMCFprovides a goodfit to the students’ knowledgeproficiencywhilemaintaining student
performance prediction that is comparable to other student cognitive models.

Future Work

• Considering the learning dependency of knowledge concepts.

• Investigating other efficient parameter learning methods and exploring their scalability.
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