Evaluating alignment between humans and neural network representations in image-based learning tasks

Can Demircan, Tankred Saanum, Leonardo Pettini, Marcel Binz Blazej M Baczkowski, Christian F Doeller, Mona M Garvert, Eric Schulz

HELMHULIZ MUNICH

Human & neural network alignment

Human & neural network alignment

• Humans have rich sensory representations and can generalise effectively.

Human & neural network alignment

- Humans have rich sensory representations and can generalise effectively.
- What determines whether a neural network generalises like a human?

Both humans and neural networks can learn to solve the tasks.

Multimodal models are particularly human-like in how they perform.

Гask

Self-Supervised Multimodal

Language Human Aligned

Several factors are important for alignment

Future outlook

- For ML: Measuring alignment using semantically rich tasks can help build stronger models.

- For CogSci: Opportunities to study behaviour in more naturalistic settings and leverage pretrained neural networks for cognitive models

Future outlook

- For ML: Measuring alignment using semantically rich tasks can help build stronger models.

- For CogSci: Opportunities to study behaviour in more naturalistic settings and leverage pretrained neural networks for cognitive models

Poster Evaluating alignment between humans and neural network representations in image-based learning tasks

Can Demircan · Tankred Saanum · Leonardo Pettini · Marcel Binz · Blazej Baczkowski · Christian Doeller · Mona Garvert · Eric Schulz

Wed 11 Dec 11 a.m. PST – 2 p.m. PST (Bookmark)

[<u>Abstract</u>]