Provable Benefit of Cutout and CutMix for Feature Learning

Junsoo Oh and Chulhee Yun KAIST AI

Cutout and CutMix

 $(cat, dog) = (0, 1)$ **Cutout**

 $(cat, dog) = (0.4, 0.6)$ CutMix

 $(cat, dog) = (0, 1)$ Original

[DeVries and Taylor (2017); Yun et al. (2019)]

TL;DR

We investigate the benefit of Cutout and CutMix for learning features from data, and show ERM < Cutout < CutMix in "extracting" rare features

Characteristics of Images

Label-dependent **feature** e.g. Cat's face

Label-independent **noise** e.g. background

Training Data Test Data

Data Distribution

We now define our feature-noise data distribution $(\mathbf{X},y)\thicksim \mathscr{D}.$

Label $y \in \{\pm 1\}$ is sampled uniformly at random, and data point $\mathbf{X} = (\mathbf{x}^{(1)},...,\mathbf{x}^{(P)})$ consists of P "patches" of three different kinds:

x⁽¹⁾ **x**⁽²⁾ **x**⁽³⁾ **x**⁽⁴⁾ **x**⁽⁵⁾ … **x**^(P) $X \in \mathbb{R}^{d \times P}$ One **Feature** Patch

One **Dominant Noise** Patch

P − 2 **Background Noise** Patches

Data Distribution

Feature Patch. For each given label $y \in \{\pm 1\}$, there are K feature vectors $\{\mathbf v_{y,k}\}_{k\in[K]}$ which occur with conditional probabilities $\{\rho_k\}_{k\in[K]}$.

There are three kinds of features, with different levels of $\boldsymbol{\mathsf{rarity}}$ (small ρ_k means rare) $\boldsymbol{\mathcal{X}}_C \subset [K]$, Rare $\mathcal{K}_R \subset [K]$, and Extremely Rare $\mathcal{K}_E \subset [K]$.

Given the choice of y , choose ${\bf v}$ from $\{{\bf v}_{y,k}\}_{k\in[K]}$ with probability $\{\rho_k\}_{k\in[K]}$ and position $p^* \in [P]$ uniformly at random, set $\mathbf{x}^{(p^*)} = \mathbf{v}$.

Here, $\{v_{s,k}\}_{s\in\{\pm 1\}, k\in[K]}$ is orthonormal, $\rho_1 \geq \rho_2 \geq \ldots \geq \rho_K$, a

$$
\mathsf{nd}\ \sum\nolimits_{k=1}^K \rho_k = 1.
$$

-
-

Data Distribution

Dominant Noise Patch. Sample patch index $\tilde{p} \neq p^*$. Set $\mathbf{x}^{(\tilde{p})} = \alpha \mathbf{u} + \xi^{(\tilde{p})},$ where α **u** is "feature noise" and $\xi^{(\tilde{p})} \sim N(\mathbf{0}, \sigma_{\mathrm{d}}^2 \mathbf{\Lambda}).$ $\frac{d}{d}$ **Λ**)

The feature noise is drawn $\mathbf{u} \sim \mathsf{Unif}\{\mathbf{v}_{+1,1}, \mathbf{v}_{-1,1}\}$ to model "confusing" features.

independent and identically distributed Gaussian noise $\mathbf{x}^{(p)} = \xi^{(p)} \sim N(\mathbf{0}, \sigma_{\rm b}^2 \mathbf{\Lambda}).$

Background Noise Patch. The remaining $P - 2$ patches $p \in [P] \setminus \{p^*, \tilde{p}\}$ are filled with ^b**Λ**)

Here,
$$
\Lambda = \mathbf{I} - \sum \mathbf{v}_{s,k} \mathbf{v}_{s,k}^{\top}
$$
 and $\sigma_d \gg \sigma_b$.

Network Architecture

- We define 2-Layer CNN $f_{\mathbf{W}}:\mathbb{R}^{d\times F}\rightarrow\mathbb{R}$, parameterized by $\mathbf{W} = \{ \mathbf{w}_1, \mathbf{w}_{-1} \} \in \mathbb{R}^{d \times 2}$. $f_{\mathbf{W}}:\mathbb{R}^{d\times P}\rightarrow\mathbb{R}$ $\mathbf{W} = {\mathbf{w}_1, \mathbf{w}_{-1}} \in \mathbb{R}^{d \times 2}$
- For input $\mathbf{X} = (\mathbf{x}^{(1)}, ..., \mathbf{x}^{(P)}) \in \mathbb{R}^{d \times P}$, we define $\mathbf{X} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(P)}) \in \mathbb{R}^{d \times P}$

$$
f_{\mathbf{W}}(\mathbf{X}) = \sum_{p \in [P]} \phi\left(\left\langle \mathbf{w}_1, \mathbf{x}^{(p)} \right\rangle\right) - \sum_{p \in [P]} \phi\left(\left\langle \mathbf{w}_1, \mathbf{x}^{(p)} \right\rangle\right)
$$

If $f_{\mathbf{W}}(\mathbf{X}) \geq 0$, predict $y = +1$, and vice versa.

The activation function ϕ is a smoothed leaky ReLU activation.

Training Procedure 1: ERM

Training Data: $\{ \mathbf{X}_i, y_i \}_{i \in [n]}$ i.i.d ∴.\
∕

1 \overline{n} \overline{C} *i*∈[*n*] $\ell(y_i f_{\mathbf{W}}(\mathbf{X}_i)),$

We define **ERM loss** as

 $\mathscr{L}_{\text{ERM}}(\mathbf{W}) :=$

We consider GD on ERM loss $\mathscr{L}_{\mathrm{ERM}}(\mathbf{W})$ with learning rate η . where $\ell(\cdot)$ is the logistic loss $\ell(z) = \log(1 + \exp(-z))$.

We define **Cutout loss** as $\mathscr{L}_{\text{Cutout}}(\mathbf{W}) :=$ 1 \overline{n} \overline{C}

We consider GD on Cutout loss $\mathscr{L}_{\text{Cutoff}}(\mathbf{W})$ with learning rate η .

i∈[*n*] \sim _{2%} $\mathcal{E}(y_i f_{\mathbf{W}}(\mathbf{X}_{i, \mathcal{C}}))$.

[*P*]

C)

We fix $1 \leq C < P/2$. $\mathscr{D}_{\mathscr{C}}$ is a uniform distribution on $\Big(\begin{array}{c} 1 \ C \end{array} \Big).$

Training Procedure 2: Cutout **Augmented Data**: For each $i \in [n]$ and $\mathscr{C} \in \left\{ \right.$ [*P*] *C*) $\mathbf{x}^{(p)}_i$ $\binom{(p)}{i, \mathcal{C}} = \left\{$ $\mathbf{x}_i^{(p)}$ if $p \notin$ **0** otherwise $\mathbf{X}_{i,g} = (\mathbf{x}_{i,g}^{(1)},...,\mathbf{x}_{i,g}^{(P)})$ where $\mathbf{x}_{i,g}^{(P)} = \left\{ \begin{array}{ccc} \mathbf{A}_i & \cdots & \mathbf{A}_i \\ \mathbf{A}_i & \mathbf{B}_i \end{array} \right.$ $= (\mathbf{x}^{(1)}_{i \, \emptyset})$ *i*, $, \ldots, \mathbf{X}^{(P)}_i$ *i*,) where

Training Procedure 3: CutMix

Augmented Data: For each $i, j \in [n]$ and $\mathcal{S} \subset [P]$.

 \blacksquare

We define **CutMix loss** as

$$
\mathcal{L}_{\text{CutMix}}(\mathbf{W}) := \frac{1}{n^2} \sum_{i,j \in [n]} \mathbb{E}_{\mathcal{S} \sim \mathcal{D}_{\mathcal{S}}} \left[\frac{|\mathcal{S}|}{P} \mathcal{E}(y_i f_{\mathbf{W}}(\mathbf{X}_{i,j,\mathcal{S}})) + \left(1 - \frac{|\mathcal{S}|}{P} \right) \mathcal{E}(y_j f_{\mathbf{W}}(\mathbf{X}_{i,j,\mathcal{S}})) \right]
$$

We consider GD on CutMix loss $\mathscr{L}_{\text{CutMix}}(\mathbf{W})$ with learning rate η .

where **X**

] .

$$
\mathbf{X}_{i,j,\mathcal{S}} = (\mathbf{x}_{i,j,\mathcal{S}}^{(1)}, \dots, \mathbf{x}_{i,j,\mathcal{S}}^{(P)})
$$

is a distribution such that: 1. uniformly choose size $s \in \{0,1,...,P\}$ and 2. uniformly choose S from $\begin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}$. [*P*] *s*)

$$
\mathbf{x}_{i,j,\mathcal{S}}^{(p)} = \begin{cases} \mathbf{x}_i^{(p)} & \text{if } p \in \mathcal{S} \\ \mathbf{x}_j^{(p)} & \text{otherwise} \end{cases}
$$

.

i j i i i j j

Main Results - ERM

- 1. (Perfectly fits training set): For all
- 2. (Random guess on new data with rare and extremely rare features): ℙ(**X**,*y*)[∼] [*yf* $E_{\mathbf{W}^{(T)}}(\mathbf{X}) > 0$] $\approx 1 - \frac{1}{2}$ $\overline{2}$ $\overline{2}$ k ∈ \mathcal{K}_{R} ∪ \mathcal{K}_{E} *ρk*

$$
\mathbb{P}_{(\mathbf{X},y)\sim\mathscr{D}}[yf_{\mathbf{W}^{(T)}}(\mathbf{X})]
$$

 T_{ERM} such that any $T \in [T_{\text{ERM}}, T^{*}]$ satisfies the following: **W**(*t*) **Theorem 3.1** (ERM Training)

$$
i \in [n], y_i f_{\mathbf{W}^{(T)}}(\mathbf{X}_i) > 0.
$$

Here, *T** **is any large enough (polynomial in** *d***) admissible training iterations**

Let $\mathbf{W}^{(l)}$ be iterates of ERM training. Then with high probability, there exists

Main Results - Cutout

- 1. (Perfectly fits augmented data): For all and η
- 2. (Perfectly fits original training data): For all $i \in [n]$, $y_i f_{\mathbf{W}^{(T)}}(\mathbf{X}_i) > 0$.
- 3. (Random guess on new data with extremely rare features):

Let $\mathbf{W}^{(l)}$ be iterates of Cutout training. Then with high probability, there exists T_{Cutout} such that any $T \in [T_{\text{Cutout}}, T^*]$ satisfies the following: **W**(*t*) **Theorem 3.2** (Cutout Training)

For all
$$
i \in [n]
$$
 and $\mathscr{C} \in \binom{[P]}{C}$, $y_i f_{W^{(i)}}(X_{i,\mathscr{C}}) > 0$.

$$
\mathbb{P}_{(\mathbf{X},y)\sim\mathcal{D}}[yf_{\mathbf{W}^{(T)}}(\mathbf{X})>0] \approx 1 - \frac{1}{2} \sum_{k \in \mathcal{K}_E} \rho_k
$$

Main Results - CutMix

exists some $T_{\rm CutMix} \in [0,T^{*}]$ that satisfies the following: **W**(*t*) **Theorem 3.3** (CutMix Training)

- 1. (Achieves a Near Stationary Poin
- 2. (Perfectly fits original training data): For all $i \in [n]$, $y_i f_{\mathbf{W}^{(T)}}(\mathbf{X}_i) > 0$.
- 3. (Almost perfectly classifies test data): $\mathbb{P}_{(\mathbf{X},y)\sim\mathscr{D}}[yf_{\mathbf{W}^{(T)}}(\mathbf{X})>0]\approx 1.$

Let $\mathbf{W}^{(l)}$ be iterates of CutMix training. Then with high probability, there

$$
\text{at):} \left\| \nabla_{\mathbf{W}} \mathcal{L}_{\text{CutMix}} \left(\mathbf{W}^{(T_{\text{CutMix}})} \right) \right\| \approx 0
$$

Main Results - Summary

