Yuval Filmus, Steve Hanneke, Idan Mehalel and Shay Moran

Bandit-Feedback Online Multiclass Classification: Variants and Tradeoffs

NeurIPS, December 2024

Yuval Filmus Technion

Steve Hanneke Purdue University

Shay Moran Technion, Google

Online classification

- * A repeated game between Lrn and Adv.
- * Given: *domain* \mathcal{X} , *label set* \mathcal{Y} , *concept class* \mathcal{H} of $\mathcal{X} \to \mathcal{Y}$ functions.
- * Adv chooses a target function $h^* \in \mathcal{H}$.
- * For t = 1, ..., T:
 - * Adv chooses an instance $x_t \in \mathcal{X}$ and sends it to Lrn.
 - * Lrn predicts $\hat{y}_t \in \mathcal{Y}$ (possibly at random, distribution is non-private).
 - Adv provides feedback:
 - * Full-information: $h^{\star}(x_t)$, or
 - * Bandit: $1[\hat{y}_t = h^*(x_t)].$

Target min/max value: the *mistake bound* $M = \mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}[\hat{y}_t \neq h^*(x_t)]\right].$

* Interested in the *minimax optimal* $M := M^{\star}(\mathcal{H}, \text{randomness}?, \text{feedback})$.

Full information

- Full information:
 - * [Daniely, Sabato, Ben-David, Shalev-Shwartz '15]:
 - * $M^{\star}(\mathcal{H}, \text{rand}, \text{full}) \approx M^{\star}(\mathcal{H}, \text{det}, \text{full}) \approx \text{Ldim}(\mathcal{H}).$

Bandit feedback - deterministic learners

- * What happens with bandit-feedback?
 - * [Auer and Long '99]:
 - * $M^{\star}(\mathcal{H}, \det, bandit) = O(Ldim(\mathcal{H})|\mathcal{Y}|\log|\mathcal{Y}|).$
 - * [Long '20, Genesson '21]:
 - * $\exists \mathcal{H}: M^{\star}(\mathcal{H}, \det, bandit) = \Omega (Ldim(\mathcal{H}) | \mathcal{Y} | \log | \mathcal{Y} |).$

Bandit feedback - randomized learners

- * What happens with bandit-feedback, when randomness is allowed?
 - * [easy]:

* $\exists \mathcal{H}: \mathbb{M}^{\star}(\mathcal{H}, \text{rand}, \text{bandit}) = \Omega\left(\mathsf{Ldim}(\mathcal{H})|\mathcal{Y}|\right).$

- Previous SOTA upper bound of order
 Ldim(*H*) | *Y* | log | *Y* | is deterministic.
- * <u>Question</u>: Can a randomized algorithm shave the log **%** factor?
- * <u>Answer:</u> Yes! [this work]:
 - * $M^{\star}(\mathcal{H}, \text{rand}, \text{bandit}) = O\left(\mathsf{Ldim}(\mathcal{H})|\mathcal{Y}|\right).$

The price of determinism

- * Trivially: $M^*(\mathcal{H}, det, bandit) \ge M^*(\mathcal{H}, rand, bandit)$.
- * By how much?
 - * [easy]:

* $M^{\star}(\mathcal{H}, \det, bandit) = O\left(|\mathcal{Y}|\log|\mathcal{Y}| \cdot M^{\star}(\mathcal{H}, rand, bandit)\right).$

- * <u>Question:</u> Is this tight for some classes?
- * Answer: Yes (at least up to a log factor) [this work]:

* $\exists \mathscr{H}: \mathbb{M}^{\star}(\mathscr{H}, \det, bandit) = \Omega\left(|\mathscr{Y}| \cdot \mathbb{M}^{\star}(\mathscr{H}, rand, bandit)\right).$

Main technical contribution

- Tight bound for online classification with expert advice.
- * Theorem [this work]: Suppose that *n* experts publish sequential predictions for a target sequence $Y = y_1, ..., y_T \in \mathcal{Y}$. Then, there exists a randomized algorithm sequentially predicting *Y*, that receives bandit feedback and has the mistake bound

$$M^{\star}(n, \mathsf{OPT}) = O\left(|\mathscr{Y}| \left[\log_{|\mathscr{Y}|} n + \mathsf{OPT}\right]\right).$$

* **OPT** is the #mistakes made by the best expert.

* Future work:

- Multilabel setting (Multiple correct labels)
- * Similar questions for other feedback models