Spectral-Risk Safe Reinforcement Learning with Convergence Guarantees

Dohyeong Kim, Taehyun Cho, Seungyub Han, Hojun Chung, Kyungjae Lee, Songhwai Oh Robot Learning Lab, Seoul National University

SEOUL NATIONAL UNIVERSITY Dept. of Electrical and Computer Engineering

Motivation

• Safe RL:
$$max_{\pi}\mathbb{E}[\Sigma_{t=0}^{\infty}\gamma^{t}R_{t}]$$
 s.t. $\mathbb{E}[\Sigma_{t=0}^{\infty}\gamma^{t}C_{i,t}] \leq d_{i}/(1-\gamma).$

Motivation

• A risk-constrained RL (RCRL) problem:

 $\max_{\pi} J_R(\pi)$ s.t. $\mathcal{R}_i(\mathcal{C}_i^{\pi}) \leq d_i \forall_i$, where \mathcal{R}_i is a risk measure.

• Due to the **nonlinearity of risk measures**, it is challenging to develop a safe RL algorithm that guarantees **convergence to an optimal policy**.

 \Rightarrow Propose a bilevel optimization framework for risk-constrained RL using the duality of spectral risk and show convergence guarantees in tabular settings.

Spectral Risk Measure

• Definition:

$$\mathcal{R}_{\sigma}(X) \coloneqq \int_0^1 F_X^{-1}(u) \sigma(u) du,$$

where σ (spectrum) is an increasing function, $\sigma \ge 0$, and $\int_0^1 \sigma(u) du = 1$.

• Example:

Conditional value at risk (CVaR): $\sigma(u) = \mathbf{1}_{u \ge \alpha} / (1 - \alpha)$.

Spectral Risk Measure

• Definition:

$$\mathcal{R}_{\sigma}(X) \coloneqq \int_0^1 F_X^{-1}(u) \sigma(u) du,$$

where σ (spectrum) is an increasing function, $\sigma \ge 0$, and $\int_0^1 \sigma(u) du = 1$.

• Dual form expression:

$$\mathcal{R}_{\sigma}(X) = \inf_{g} \mathbb{E}[g(X)] + \int_{0}^{1} g^{*}(\sigma(u)) du =: \mathcal{R}_{\sigma}^{g}(X),$$

where g is an increasing convex function,
 $g^{*}(y) \coloneqq \inf_{x} xy - g(x)$ is the convex conjugate of g,
and $\mathcal{R}_{\sigma}^{g}(X)$ is a sub-risk measure.

Bilevel Optimization Framework

RLLAB

• Reformulation of the RCRL problem:

$$\max_{\pi} J_{R}(\pi) \text{ s.t. } \mathcal{R}_{\sigma_{i}}(C_{i}^{\pi}) \leq d_{i} \forall_{i}.$$

$$\Rightarrow \sup_{g_{1},...,g_{N}} \max_{\pi} J_{R}(\pi) \text{ s.t. } \mathcal{R}_{\sigma_{i}}^{g_{i}}(C_{i}^{\pi}) \leq d_{i} \forall_{i}.$$
Inner problem
Outer problem

Experimental Results

• Legged robot locomotion tasks:

Quadrupedal (Laikago)

Dohyeong Kim

8

Experimental Results

SRCPO (Proposed)

WCSAC-D

Dohyeong Kim

Experimental Results

SRCPO (Proposed)

Experimental Results

Thank you for listening!

If you have any questions,

please contact to dohyeong.kim@rllab.snu.ac.kr.

SEOUL NATIONAL UNIVERSITY Dept. of Electrical and Computer Engineering

