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Motivation

• Neural networks: highly vulnerable to adversarial a7acks  

• How to learn robust models? standard loss → robust loss  

• Prac>cal approach: Adversarial Training [1] 

• Generaliza>on guarantees of robust learning: uniform convergence [2] & algorithmic stability [3] 

• Previous works focus on analyzing the stability for convex loss [4] or general non-convex loss [3]
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QuesDon Can we give be+er stability guarantees of adversarial training 
for neural networks——a special instance of non-convex loss?



Two-layer neural networks
• Two-layer network parameterized by :  

• : number of hidden units/width 

• : -smooth and Lipschitz ac>va>on 

•   kept fixed throughout training 

• No restric>on on the ini>aliza>on of weight  

• Binary classifica>on: input , label  

• Loss func>on: logis>c loss   
                                                      —— smooth and Lipschitz
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Adversarial Training
• General a7ack model:                           Special instance:  

• Robust loss:  

• Adversarial Training:  

                   Step 1: for , generate , s.t.  

                   Step 2: do one step gradient descent for , and go back to step 1 

• Remark:  captures the precision of the a7ack algorithm 

• Difficulty: the robust loss  is non-convex and non-smooth 
                                 ——hard to establish computa>onal guarantees for a non-convex and non-smooth loss  
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Main Result: Guarantees of Adversarial Training
Theorem (informal): If width , 

1. generaliza9on guarantee: 

                    .  

2. Op9miza9on guarantee: 
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Remark 1: A small  and  suffices to guarantee a small generalization gap 

Remark 2:  can be viewed as early stopping 

Remark 3: A very small learning rate  is required for  to be small

β ηT ≪ min{ m, n}
ηT ≪ min{ m, n}

η η T



Technical Insights
1. Uniform Argument Stability 
• Stability captures the difference in outputs, if the inputs differ in one example 

                               ——for neighboring ,  

• Better stability gives better generalization 

                               

• For neighboring , if width , 
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Technical Insights
2. Weakly Convex Robust Loss 

•  is called -weakly convex, if  is convex  

• If , then  is approximately convex 

•  is -weakly convex 

• If width ,  behaves similarly as a convex loss 

                                    ——stability is established based on the weakly convex property
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Improvement: Smoothing Using Moreau Envelope
 in stability upper bound arises due to non-smoothness of robust loss.  

QuesDon: Can we remove this term? 

• For , define Moreau Envelope  

•  is smooth, and it has the same global minimizer as  

•  

• Doing gradient descent on  guarantees:  

                 for neighboring , if , , 
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