NeurIPS 2024

Stability and Generalization of Adversarial Training for Shallow Neural Networks with Smooth Activation

Kaibo Zhang, Yunjuan Wang, Raman Arora Johns Hopkins University

Motivation

- Neural networks: highly vulnerable to adversarial attacks
- How to learn robust models? standard loss \rightarrow robust loss
- Practical approach: Adversarial Training [1]
-
-

• Generalization guarantees of robust learning: uniform convergence [2] & algorithmic stability [3] • Previous works focus on analyzing the stability for convex loss [4] or general non-convex loss [3]

[1] Madry et al. (2018). "Towards deep learning models resistant to adversarial attack." In: International Conference on Learning Representations. [2] Xiao et al (2023). "PAC-Bayesian adversarially robust generalization bounds for deep neural networks.". In: The Second Workshop on New Frontiers in Adversarial Machine Learning. [3] Xiao et al. (2022). "Stability analysis and generalization bounds of adversarial training." In: Advances in Neural Information Processing Systems. [4] Xing et al. (2021). "On the algorithmic stability of adversarial training." In: Advances in Neural Information Processing Systems.

Question *Can we give better stability guarantees of adversarial training for neural networks——a special instance of non-convex loss?*

Two-layer neural networks

- Two-layer network parameterized by $(a, W): f_W(x) =$
- *m*: number of hidden units/width
- $\phi(x)$: H -smooth and Lipschitz activation
- $|a_{s}| = \frac{1}{\sqrt{2\pi}}$ kept fixed throughout training 1 *m*
- $\bullet~$ No restriction on the initialization of weight W_{0}
- Binary classification: input $||x||_2 \leq C_x$, label
- Loss function: logistic loss $\ell(z) = \ln(1 + e^{-z})$

—— smooth and Lipschitz

 $||x||_2 \le C_x$, label $y \in \{\pm 1\}$

Adversarial Training

- General attack model: $B(x) \supseteq \{x\}$
- Robust loss: $\mathscr{C}_{\text{rob}}(W; (x, y)) = \text{sup } \mathscr{C}(W; (\tilde{x}, y))$ *x*˜∈*B*(*x*)
- Adversarial Training: min *W* $L_{\text{rob}}(W) =$ ̂ 1 \overline{n} \overline{z}

 $\mathcal{S}(\mathcal{X}) = \mathcal{S}(\mathcal{X}) = \mathcal{X}(\mathcal{X}) = \mathcal{X}(\mathcal{X}) = \mathcal{X}(\mathcal{X}(\mathcal{X}, \mathcal{Y})) \geq \mathcal{E}_{\text{rob}}\left(W; (x, y)\right) - \beta$ Step 2: do one step gradient descent for $\;\;\sum\; \ell\left(\,W;\left(\tilde{x},y\right)\right)$, and go back to step 1

- Remark: β captures the precision of the attack algorithm
- Difficulty: the robust loss $L_{\rm rob}(W)$ is non-convex and non-smooth ̂

 $B(x) \supseteq \{x\}$ Special instance: $B(x) = \{\tilde{x} | ||\tilde{x} - x|| \leq \alpha\}$

——hard to establish computational guarantees for a non-convex and non-smooth loss

$$
\sum_{(x,y)\in S} \mathcal{E}_{\text{rob}}\left(W; (x, y)\right)
$$

Main Result: Guarantees of Adversarial Training

1. generalization guarantee:

2. Optimization guarantee:

$$
\mathbb{E}L_{\text{rob}}(W_T) \le \frac{1}{1 - O\left(\eta\sqrt{T} + \frac{\eta T}{n} + \sqrt{\beta\eta T}\right)} \mathbb{E}\hat{L}_{\text{rob}}(W_T).
$$

ee a small generalization gap

1

Theorem (informal): If width $m \geq O(\eta^2 T^2),$

$$
\min_{0 \le t \le T} \hat{L}_{\text{rob}}(W_t) \le \min_W \left(\hat{L}_{\text{rob}}(W) + \frac{2}{\eta T} \|W - W_0\|_F^2 \right) + O(\eta)
$$

Remark 1: A small β and $\eta T \ll \min\{\sqrt{m}, n\}$ suffices to guarantee a
Remark 2: $\eta T \ll \min\{\sqrt{m}, n\}$ can be viewed as early stopping
Remark 3: A very small learning rate η is required for $\eta \sqrt{T}$ to be small

Technical Insights

- 1. *Uniform Argument Stability*
- Stability captures the difference in outputs, if the inputs differ in one example $-$ – for neighboring $S_1, S_2, \, \delta_\mathscr{A}(S_1,S_2) = \|\mathscr{A}(S_1) - \mathscr{A}(S_2)\|_F$
	-
- Better stability gives better generalization

$$
\mathbb{E}L_{\text{rob}}(\mathcal{A}(S)) \le \frac{1}{1 - C_x \sup_{S_1 \simeq S_2} \delta_{\mathcal{A}}(S_1, S_2)} \mathbb{E}\hat{L}_{\text{rob}}(\mathcal{A}(S))
$$

• For neighboring S_1, S_2 , if width $m \geq O(\eta^2 T^2)$, S_1 , S_2 , if width $m \geq O(\eta^2)$

$$
(\eta^2T^2),
$$

$$
\delta_{\mathscr{A}}(S_1, S_2) = O\left(\eta \sqrt{T} + \frac{\eta T}{n} + \sqrt{\beta \eta T}\right)
$$

Technical Insights

2. *Weakly Convex Robust Loss*

- $f(x)$ is called $-l$ -weakly convex, if $f(x) + \frac{1}{2}||x||_2^2$ is convex
- If $l \approx 0$, then $f(x)$ is approximately convex

• If width $m \geq O(\eta^2 T^2)$, $\hat{L}_{\text{rob}}(W)$ behaves similarly as a convex loss ̂

•
$$
\hat{L}_{\text{rob}}(W)
$$
 is $-\frac{HC_x^2}{\sqrt{m}}$ -weakly convex

——stability is established based on the weakly convex property

$$
+\frac{1}{2}||x||_2^2
$$
 is convex

Improvement: Smoothing Using Moreau Envelope $\eta \sqrt{T}$ in stability upper bound arises due to non-smoothness of robust loss.

Question: Can we remove this term?

• For $\mu < O(\sqrt{m})$, define Moreau Envelope $M^{\mu}(W) = \min_{\mathcal{A}}$

- $M^{\mu}(W)$ is smooth, and it has the same global minimizer as \hat{L}
- *L* ̂ $r_{\text{rob}}(W) - O(\mu) \le M^{\mu}(W) \le \hat{L}_{\text{rob}}(W)$ ̂
- Doing gradient descent on $M^{\mu}(W)$ guarantees:

for neighboring S_1, S_2 , if $m \geq O(\eta^2 T^2), \eta \leq \mu$, S_1 , S_2 , if $m \geq O(\eta^2)$

̂ $_{\rm rob} (W)$

$$
\text{se } M^{\mu}(W) = \min_{U} \left(\hat{L}_{\text{rob}}(U) + \frac{\|U - W\|_{F}^{2}}{2\mu} \right)
$$

$$
(\eta^2 T^2), \eta \le \mu, \delta_{\mathcal{A}}(S_1, S_2) = O\left(\frac{\eta T}{n}\right)
$$