Stability and Generalization of Adversarial Training for Shallow Neural Networks with Smooth Activation

Kaibo Zhang, Yunjuan Wang, Raman Arora **Johns Hopkins University**

NeurIPS 2024

Motivation

- Neural networks: highly vulnerable to adversarial attacks
- How to learn robust models? standard loss \rightarrow robust loss
- Practical approach: Adversarial Training [1]

Can we give better stability guarantees of adversarial training Question for neural networks—-a special instance of non-convex loss?

[1] Madry et al. (2018). "Towards deep learning models resistant to adversarial attack." In: International Conference on Learning Representations. [2] Xiao et al (2023). "PAC-Bayesian adversarially robust generalization bounds for deep neural networks.". In: The Second Workshop on New Frontiers in Adversarial Machine Learning. [3] Xiao et al. (2022). "Stability analysis and generalization bounds of adversarial training." In: Advances in Neural Information Processing Systems. [4] Xing et al. (2021). "On the algorithmic stability of adversarial training." In: Advances in Neural Information Processing Systems.

• Generalization guarantees of robust learning: uniform convergence [2] & algorithmic stability [3] • Previous works focus on analyzing the stability for convex loss [4] or general non-convex loss [3]

Two-layer neural networks

- *m*: number of hidden units/width
- $\phi(x)$: H-smooth and Lipschitz activation
- $|a_s| = \frac{1}{\sqrt{m}}$ kept fixed throughout training
- No restriction on the initialization of weight W_0
- Binary classification: input $||x||_2 \leq C_x$, label $y \in \{\pm 1\}$
- Loss function: logistic loss $\ell(z) = \ln(1 + e^{-z})$

—— smooth and Lipschitz

Adversarial Training

- General attack model: $B(x) \supseteq \{x\}$
- Robust loss: $\mathscr{C}_{rob}(W;(x,y)) = \sup \mathscr{C}(W;(\tilde{x},y))$ $\tilde{x} \in B(x)$
- Adversarial Training: $\min_{W} \hat{L}_{rob}(W) = \frac{1}{n} \sum_{(x,y)} \sum_{(x,y)} \sum_{(x,y)}$

Step 1: for $(x, y) \in S$, generate $\tilde{x} \in B(x)$, s.t. $\ell(W; (\tilde{x}, y)) \ge \ell_{rob}(W; (x, y)) - \beta$ Step 2: do one step gradient descent for $\sum \ell(W; (\tilde{x}, y))$, and go back to step 1

- Remark: β captures the precision of the attack algorithm
- Difficulty: the robust loss $\hat{L}_{
 m rob}(W)$ is non-convex and non-smooth

Special instance: $B(x) = \{\tilde{x} \mid ||\tilde{x} - x|| \le \alpha\}$

$$\sum_{v,y \in S} \ell_{\text{rob}} \left(W; (x, y) \right)$$

——hard to establish computational guarantees for a non-convex and non-smooth loss

Main Result: Guarantees of Adversarial Training

Theorem (informal): If width $m \ge O(\eta^2 T^2)$,

1. generalization guarantee:

 $\min_{0 \le t \le T} \hat{L}_{\text{rob}}(W_t) \le \min_{W} \left(\hat{L}_{\text{rob}}(W) + W \right)$ Remark 1: A small β and $\eta T \ll \min\{\sqrt{m}, n\}$ suffices to guarantee a small generalization gap **Remark 2:** $\eta T \ll \min\{\sqrt{m}, n\}$ can be viewed as early stopping Remark 3: A very small learning rate η is required for $\eta \sqrt{T}$ to be small

$$\mathbb{E}L_{\text{rob}}(W_T) \leq \frac{1}{1 - O\left(\eta\sqrt{T} + \frac{\eta T}{n} + \sqrt{\beta\eta T}\right)} \mathbb{E}\hat{L}_{\text{rob}}(W_T).$$

$$+\frac{2}{\eta T} \|W - W_0\|_F^2 + O(\eta)$$

Technical Insights

- **1. Uniform Argument Stability**
- Stability captures the difference in outputs, if the inputs differ in one example $--\text{for neighboring } S_1, S_2, \delta_{\mathscr{A}}(S_1, S_2) = \|\mathscr{A}(S_1) - \mathscr{A}(S_2)\|_F$
- Better stability gives better generalization

$$\mathbb{E}L_{\text{rob}}(\mathscr{A}(S)) \leq \frac{1}{1 - C_x \sup_{S_1 \simeq S_2} \delta_{\mathscr{A}}(S_1, S_2)} \mathbb{E}\hat{L}_{\text{rob}}(\mathscr{A}(S))$$

• For neighboring S_1, S_2 , if width $m \ge O$

$$\delta_{\mathcal{A}}(S_1, S_2) = O\left(\eta\sqrt{T} + \frac{\eta T}{n} + \sqrt{\beta\eta T}\right)$$

$$P(\eta^2 T^2),$$

Technical Insights

2. Weakly Convex Robust Loss

- f(x) is called -l-weakly convex, if f(x)
- If $l \approx 0$, then f(x) is approximately convex

•
$$\hat{L}_{rob}(W)$$
 is $-\frac{HC_x^2}{\sqrt{m}}$ -weakly convex

• If width $m \ge O(\eta^2 T^2)$, $\hat{L}_{rob}(W)$ behaves similarly as a convex loss

$$+\frac{l}{2}||x||_2^2$$
 is convex

——stability is established based on the weakly convex property

Improvement: Smoothing Using Moreau Envelope $\eta \sqrt{T}$ in stability upper bound arises due to non-smoothness of robust loss.

Question: Can we remove this term?

• For $\mu < O(\sqrt{m})$, define Moreau Envelop

- $M^{\mu}(W)$ is smooth, and it has the same global minimizer as $\hat{L}_{rob}(W)$
- $\hat{L}_{rob}(W) O(\mu) \le M^{\mu}(W) \le \hat{L}_{rob}(W)$
- Doing gradient descent on $M^{\mu}(W)$ guarantees:

for neighboring S_1, S_2 , if $m \ge O(2)$

be
$$M^{\mu}(W) = \min_{U} \left(\hat{L}_{rob}(U) + \frac{\|U - W\|_F^2}{2\mu} \right)$$

$$(\eta^2 T^2), \eta \leq \mu, \delta_{\mathcal{A}}(S_1, S_2) = O\left(\frac{\eta T}{n}\right)$$