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Motivation

e Neural networks: highly vulnerable to adversarial attacks

e How to learn robust models? standard loss — robust loss

e Practical approach: Adversarial Training [ 1]

e Generalization guarantees of robust learning: uniform convergence [2] & algorithmic stability [3]

e Previous works focus on analyzing the stability for convex loss [4] or general non-convex loss [ 3]

Can we give better stability guarantees of adversarial training

Question .y
for neural networks a special instance of hon-convex loss?
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Two-layer neural networks

m
e Two-layer network parameterized by (a, W): fi(x) = Z a.p((w,x)) .
s=1
e m: number of hidden units/width

e (x): H-smooth and Lipschitz activation
1

¢ |a | = kept fixed throughout training

m

e No restriction on the initialization of weight W/,

e Binary classification: input || x|, < C,, labely € {£1}

e Loss function: logistic loss £(z) = In(1 + e ™)
— — smooth and Lipschitz




Adversarial Training

e General attack model: B(x) 2 {x} Special instance: B(x) = {X|[|X — x|| < o}
e Robust loss: £y, (W: (x,)) = sup £ (W; (%))
xEB(x)
e Adversarial Training: min I:mb(W) Z ()b W (x, Y))
v (xy)eS

Step 1: for (x,y) € §, generate X € B(x),s.t. £ (W (X, y)) Z ob (W (x, y)) D
Step 2: do one step gradient descent for Z c(W; (X, y)) and go back to step 1

e Remark: ﬂ captures the precision of the attack algorithm

e Difficulty: the robust loss Lmb(W) IS non-convex and non-smooth
— —hard to establish computational guarantees for a non-convex and non-smooth loss



Main Result: Guarantees of Adversarial Training

Theorem (informal): If width m > O(ﬂsz),

1. generalization guarantee:

- 2\‘1‘0b( WT) y

2. Optimization guarantee:
LA N 2 )
min L, (W,) <min | L, (W) +—||W = W,||% | + O@)
0<t<T W nl
Remark 1: Asmall f and nT' << min{+/m, n} suffices to guarantee a small generalization gap
Remark 2: #T' << min{+/m, n} can be viewed as early stopping
Remark 3: A very small learning rate 7 is required for nﬁ to be small



Technical Insights

1. Uniform Argument Stability
e Stability captures the difference in outputs, if the inputs differ in one example

for neighboring Sy, S5, 0.,(S1,$,) = || (S;) — L (S) ||~

» Better stability gives better generalization

| n
— rob(Q[(S)) < m - rob(‘Qf(S))

SlﬁSZ

 For neighboring S;, S,, if width m > O(n°T?),

04(31,9,) = O (Wﬁ"‘ %T + ﬁ’?T)



Technical Insights
2. Weakly Convex Robust Loss

e f(x) is called —[-weakly convex, if f(x) + — HxH% is convex

2
. If [ = 0, then f(x) is approximately convex
5 HC?
o L. (W)is — -weakly convex
m

 If width m > O(5?T?), L., (W) behaves similarly as a convex loss

stability is established based on the weakly convex property



Improvement: Smoothing Using Moreau Envelope

ﬂﬁ in stability upper bound arises due to non-smoothness of robust loss.

Question: Can we remove this term?

] (s |U - Wiz
e For u < O(\/m), define Moreau Envelope M¥(W) = min | L_,(U) + >
U H

« M#(W) is smooth, and it has the same global minimizer as L., (W)

o Lign(W) — O(u) < MH(W) < L (W)

» Doing gradient descent on M*(W) guarantees:

T
for neighboring S}, S5, if m > O(°T?),n < u, 5./S;,S,) = O (”—)
I



