

Aligning Model Properties via Conformal Risk Control

William Overman Jacqueline Jil Vallon Mohsen Bayati

Stanford

Problem Motivation

Background: AI models often **misalign** with user requirements due to biases in training data, underspecified objectives, or reward misspecification.^{1,2}

Challenges: Many existing methods for alignment require costly retraining or human feedback and are mainly applicable to generative models.³

Goal: Align pre-trained models to user-desired properties, especially in non-generative contexts, using a post-processing technique.

^{1.} Richard Ngo, Lawrence Chan, and Sören Mindermann. The alignment problem from a deep learning perspective, 2024.

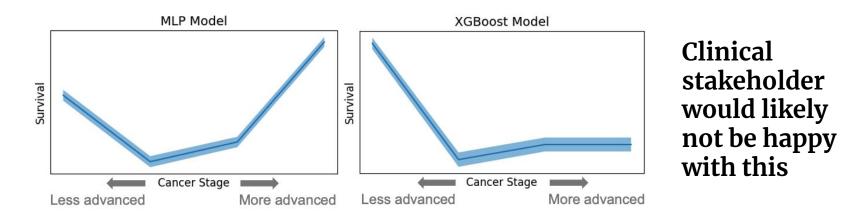
^{2.} D'Amour et al.. Underspecification Presents Challenges for Credibility in Modern Machine Learning. JMLR, 2022.

^{3.} Ji et al. AI Alignment: A Comprehensive Survey. 2023.

Non-generative settings, prostate cancer example

Modern clinical risk prediction models do not always effectively capture patterns required by the clinician

Ex. Predict 10 year survival probability of prostate cancer patient.¹

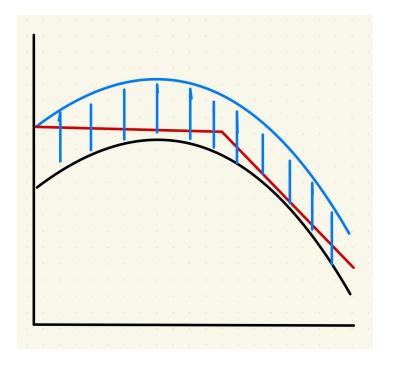


1. J. Vallon, W. Overman, W. Xu, N. Panjwani, X. Ling, S. Vij, H. Bagshaw, S. Srinivas, A. Fan, S. Shah, G. Sonn, J. Leppert, E. Pollom, M. Buyyounouski, M. Bayati. On Aligning Prediction Models with Clinical Experiential Learning: A Prostate Cancer Case Study

Think of nonincreasing behavior as a **property** of the model

Property testing in CS theory involves designing algorithms to check if a function has a certain property or is far from having it, using only a small, randomized sample of its input/output pairs.¹

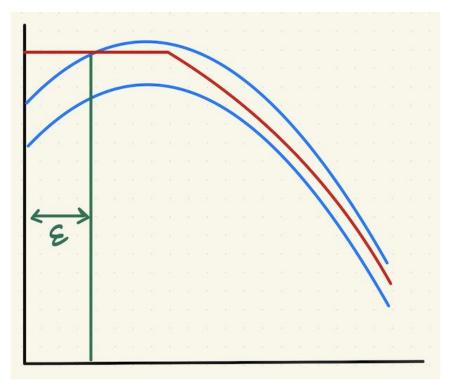
We say that a set-valued function F **accommodates** a property P if we can find a point $\hat{y} \in C(x)$ for each x such that the resulting function $g(x) = \hat{y}$ satisfies P.



- Original function
- Set-valued function
- Monotone function

The original function is not monotone, but we can fit a monotone function in the blue set-valued function AI Alignment Property Testing Risk Control Our Results Conclusion

We say that F is ϵ -Faraway from P if any function g satisfying P falls outside of F on at least ϵ fraction of the data



The blue set-valued function is ϵ -Faraway from P

A **proximity oblivious tester** (POT) is a randomized algorithm such that

- 1. If F accommodates P, then $Pr{M(F) = Accept} = 1$
- 2. If F is ε -Faraway from P, then Pr{M(F) = Reject} >= p(ε)

Where $p(\varepsilon)$ is monotone increasing in ε .

Algorithm 1 POT \mathcal{T} for property \mathcal{P} of monotonically decreasing in dimension k

- 1: Sample $X_1 \sim \mathcal{D}$. Let $X_1 = (x_1, x^{-k})$
- 2: Sample x_2 from the marginal distribution of \mathcal{D} in dimension k. Set $X_2 = (x_2, x^{-k})$
- 3: if $x_1 < x_2$ and $\max F(X_1) < \min F(X_2)$ then
- 4: return Reject
- 5: else if $x_2 < x_1$ and $\max F(X_2) < \min F(X_1)$ then
- 6: return Reject
- 7: **end if**
- 8: return Accept

Conformal Risk Control

Procedure for converting point predictions of any black box model f(x) into set-valued predictions F(x) given a calibration set of n points (x_i, y_i)

Extends **conformal prediction** to notions of error beyond miscoverage.¹

Main object is a parameter λ that controls our level of conservativeness, larger λ gives a larger prediction set $F_{\lambda}(x)$ around each point

We have a loss function L that is a function of both $F_{\lambda}(x_i)$ and the true label y_i

^{1.} Anastasios Nikolas Angelopoulos, Stephen Bates, Adam Fisch, Lihua Lei, Tal Schuster. Conformal Risk Control. In The Twelfth International Conference on Learning Representations, 2024.

Our Results

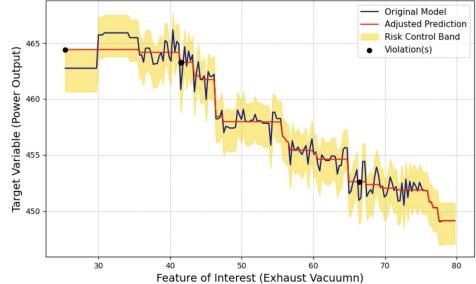
High Level Idea: Convert the output of a POT for a given property P into a loss function for conformal risk control

Ex. 0 loss if the POT accepts, 1 loss if the POT rejects

Conformal risk control then grows a prediction band F_{λ} around the pre-trained function f such that the expected loss falls below target

Our Results

Main Theorem (informal). Let T be a POT for property P. Assume we have access to a calibration dataset. If we run conformal risk control on this dataset with the loss functions generated by T then for any ε such that $p(\varepsilon) > \alpha$ the probability that the resulting function is ε –Faraway from P is at most $\alpha/p(\varepsilon)$



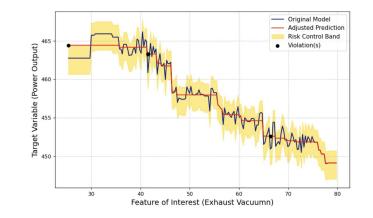
AI Alignment Property Testing Risk Control Our Results Conclusion

Table 1: Power Plant, n = 9568. Monotonically decreasing on Exhaust Vacuum. $\lambda^{\max} = (10, 10)$.

lpha	λ	Metric	Unconstrained	Adjusted	Constrained
0.1	$\lambda^+ = 0.51_{(\pm 0.24)} \ \lambda^- = 0.76_{(\pm 0.24)}$	MSE Risk	$\frac{10.19_{(\pm 0.46)}}{0.75_{(\pm 0.09)}}$	$\frac{10.47_{(\pm 0.46)}}{0.10_{(\pm 0.001)}}$	$\frac{16.21_{(\pm 0.45)}}{0.00_{(\pm 0.00)}}$
0.05	$\lambda^+ = 1.09_{(\pm 0.51)} \ \lambda^- = 1.61_{(\pm 0.50)}$	MSE Risk	$\frac{10.19_{(\pm 0.46)}}{0.75_{(\pm 0.09)}}$	${\begin{array}{c} 11.42_{(\pm 0.44)}\\ 0.05_{(\pm 0.001)}\end{array}}$	$\frac{16.21_{(\pm 0.45)}}{0.00_{(\pm 0.00)}}$
0.01	$\lambda^+ = 2.39_{(\pm 0.82)} \ \lambda^- = 3.33_{(\pm 0.79)}$	MSE Risk	${10.19_{(\pm 0.46)} \over 0.75_{(\pm 0.09)}}$	$\begin{array}{c} 14.46_{(\pm 0.48)} \\ 0.01_{(\pm 0.001)} \end{array}$	$\frac{16.21_{(\pm 0.45)}}{0.00_{(\pm 0.00)}}$

Risk – violation of property MSE– accuracy

 $\lambda^+ + \lambda^-$ – size of the interval



AI Alignment	Property Testing	Risk Control	Our Results	Conclusion
--------------	------------------	--------------	-------------	------------

Summary

Given a pretrained model that doesn't align with a desired behavior, we can use conformal risk control with loss functions coming from property testing to obtain a set-valued function that accommodates the desired property

Thank you!