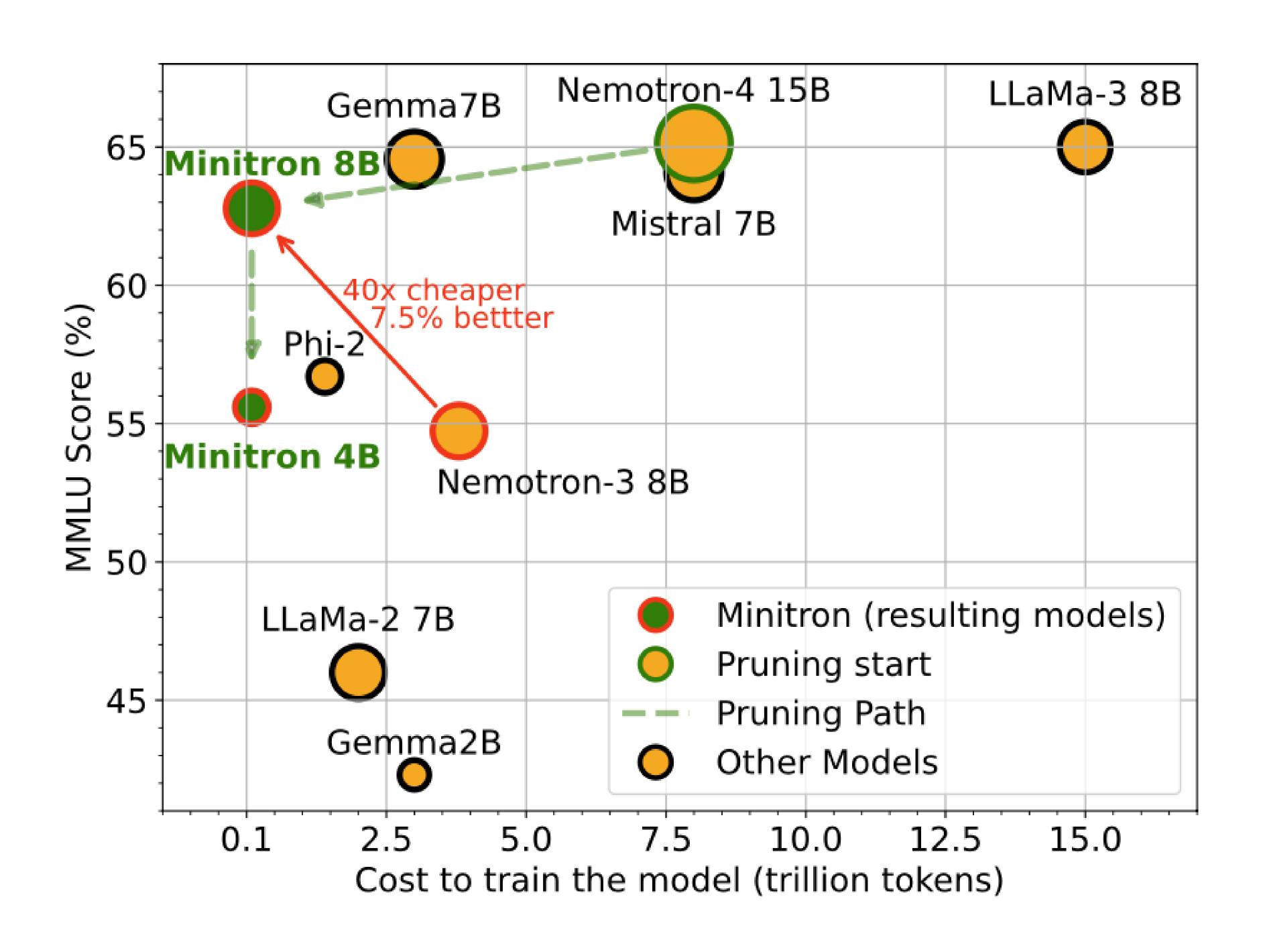
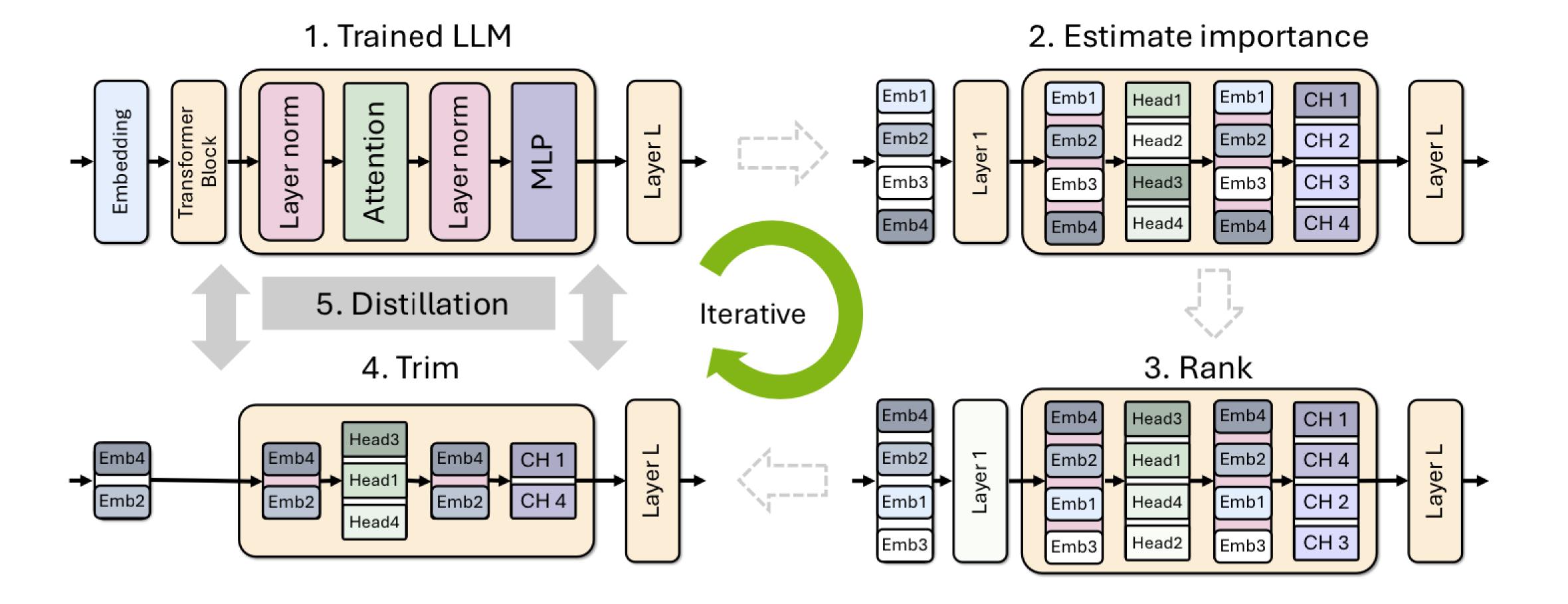


Introduction

Training LLM Model Families

• Model providers often train a family of LLMs, where each model targets a specific deployment scale/size

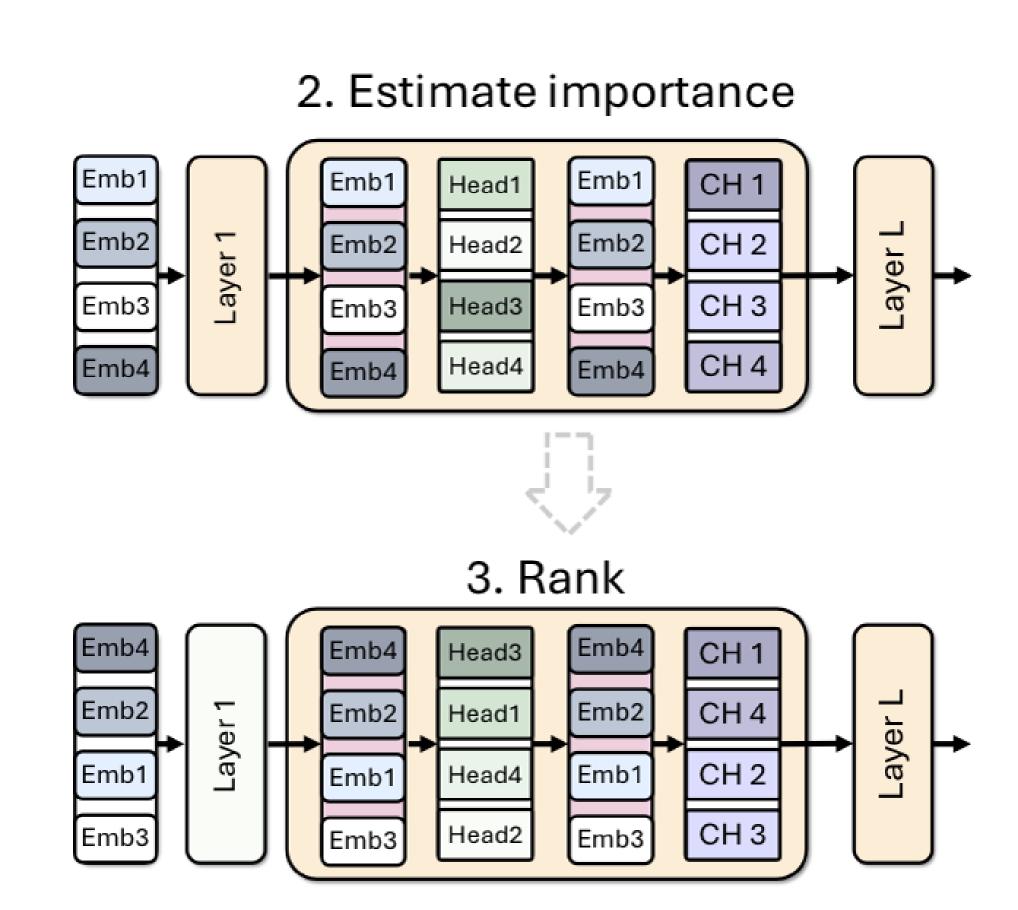



• Each model in the family is trained from scratch – expensive in compute, data, memory, etc.

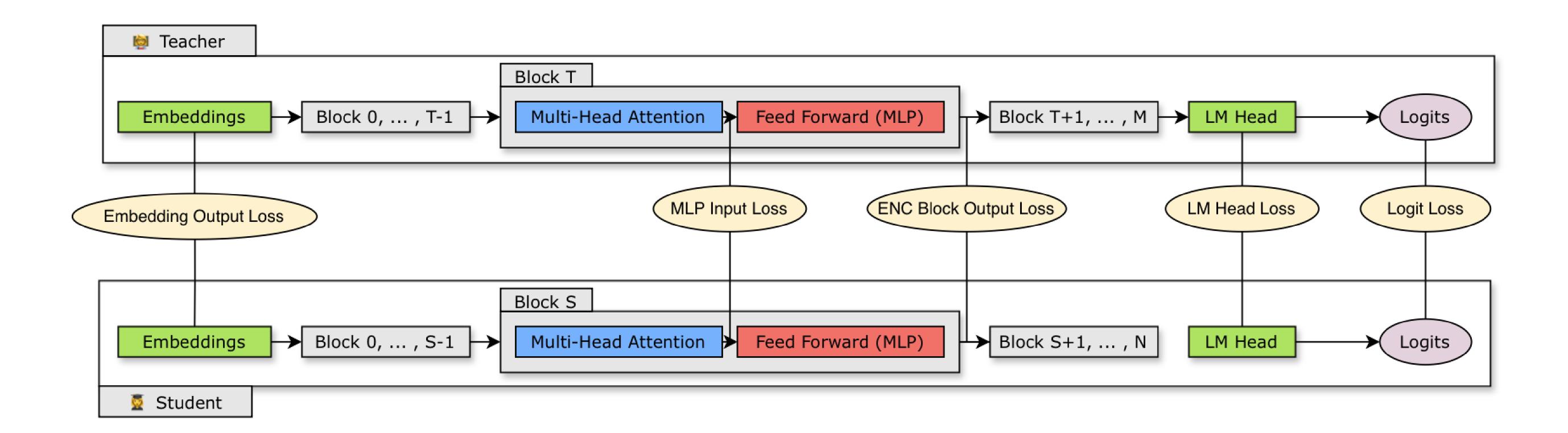
"Can we train one big model, and obtain smaller, more accurate models from it through a combination of weight pruning and retraining, while only using a small fraction of the original training data?"

Minitron Performance Preview

System Overview



Importance Estimation & Ranking


- Activation-based importance of each neuron, head, layer, and embedding channel
- Pass a small calibration dataset (1024 samples) through the network, and obtain rankings for all axes

$$F_{\text{head}}^{(i)} = \sum_{\mathbf{B}, \mathbf{S}} \| \operatorname{Attn}(\mathbf{X} \boldsymbol{W}^{Q, i}, \mathbf{X} \boldsymbol{W}^{K, i}, \mathbf{X} \boldsymbol{W}^{V, i}) \|_{2}$$
 $F_{\text{neuron}}^{(i)} = \sum_{\mathbf{B}, \mathbf{S}} \mathbf{X} (\boldsymbol{W}_{1}^{i})^{T}$
 $F_{\text{emb}}^{(i)} = \sum_{\mathbf{B}, \mathbf{S}} LN(\mathbf{X})_{i}$

$$BI_{i} = 1 - \mathbb{E}_{X,t} \frac{\mathbf{X}_{i,t}^{T} \mathbf{X}_{i+1,t}}{\|\mathbf{X}_{i,t}\|_{2} \|\mathbf{X}_{i+1,t}\|_{2}}$$

Retraining with Distillation

$$L = L_{\text{CLM}} + L_{logits} + \alpha \times L_{is}$$

$$L_{\text{logits}} = \frac{1}{l} \sum_{k=1}^{l} \text{Loss}(p_t^k(x, \tau), p_s^k(x, \tau))$$

$$L_{is} = \frac{1}{l} \sum_{k \in H} \sum_{i=1}^{l} Loss_k(h_t^{ki}, h_s^{ki})$$

Structured Compression Best Practices

- 1. To train a family of LLMs, train the largest one and prune+distill iteratively to smaller LLMs.
- 2. Use (batch=L2, seq=mean) importance estimation for width axes and PPL/BI for depth.
- 3. Use single-shot importance estimation; iterative provides no benefit.
- 4. Prefer width pruning over depth for the model scales we consider ($\leq 15B$).
- 5. Retrain exclusively with distillation loss using KLD instead of conventional training.
- 6. Use (logit+intermediate state+embedding) distillation when depth is reduced significantly.
- 7. Use logit-only distillation when depth isn't reduced significantly.
- 8. Prune a model closest to the target size.
- 9. Perform lightweight retraining to stabilize the rankings of searched pruned candidates.
- 10. If the largest model is trained using a multi-phase training strategy, it is best to prune and retrain the model obtained from the final stage of training.

Minitron 8B and 4B Accuracy

			Models						
	Benchmark	Metric	Llama-3	Llama-2	Mistral	Gemma	Nemotron-4	Nemotron-3	MINITRON
	# Parameters		8B	6.7B	7.3B	8.5B	15.6B	8.5B	8.3B
	# Non-Emb. Params		5.9B	6.4B	7B	7.7B	12.5B	6.4B	6.2B
	# Training Tokens		>15T	2T	8T	6T	8T	3.8T	94B
jic	winogrande (5)	acc	77.6	74	78.5	78	83.6	75.9	79.0
ogic	arc_challenge (25)	acc_norm	57.8	53	60.3	61	58.8	52.8	52.6
,e,I	MMLU(5)	acc	65.3	46	64.1	64	66.6	54.7	63.8
edg	hellaswag(10)	acc_norm	82.1	79	83.2	82	84.6	78.5	80.7
[w	gsm8k(5)	acc	50.3	14	37	50	48.5	24.0	51.3
Knowledge,I	truthfulqa(0)	mc2	43.9	39	42.6	45	40.7	36.5	42.6
H	XLSum en (20)(3)	rougeL	30.9	31	4.80	17	32	30.9	31.2
Codina	MBPP(0)	pass@1	42.4	20	38.8	39	38	27.04	35.2
Coding	humaneval (n=20)(0)	pass@1	28.1	12	28.7	32	35.4	20.7	31.6

	Models							
	Benchmark	Metric	Phi-2	Gemma	Gemma2*	Qwen2*	MiniCPM*	MINITRON
# Parameters			2.7B	2.5B	2.6B	1.5B	2.7B	4.2B
# Non-Emb. Params			2.5B	2B	2B	1.3B	2.4B	2.6B
# Training Tokens			1.4T	3T	2T	7T	1.1T	94B
	winogrande (5)	acc	74	67	70.9	66.2	-	74.0
	arc_challenge (25)	acc_norm	61	48	55.4	43.9	-	50.9
	MMLU(5)	acc	57.5	42	51.3	56.5	53.5	58.6
Knowledge, Logic	hellaswag(10)	acc_norm	75.2	72	73.0	66.6	68.3	75.0
	gsm8k(5)	acc	55	18	23.9	58.5	53.8	24.1
	truthfulqa(0)	mc2	44	33	-	45.9	-	42.9
	XLSum en (20)(3)	rougeL	1	11	-	-	-	29.5
	MBPP(0)	pass@1	47	29	29.6	37.4	-	28.2
Coding	humaneval (n=20)(0)	pass@1	50	24	17.7	31.1	-	23.3

Minitron vs. Other Compressed Models

	Models								
_	Benchmark	Metric	LLMPruner	SliceGPT	LaCo	ShortGPT	Sheared LLaMa	MINITRON	
8 Billion	# Parameters		9.8B	9.9B	9.8B	9.8B	_	8.3B	
	# Non-Emb. Params		9.5B	9.5B	9.5B	9.5B	_	6.2B	
	MMLU(5)	acc	25.2	37.1	45.9	54.7	_	62.8	
	hellaswag(10)	acc_norm	67.8	55.7	64.4	66.6	_	79.7	
4 Billion	# Parameters		4.8B	4.9B	4.9B	4.9B	2.7B	4.2B	
	# Non-Emb. Params		4.5B	4.6B	4.6B	4.6B	2.5B	2.6B	
	winogrande (5)	acc	_	_	_	_	64.2	73.84	
	arc_challenge (25)	acc_norm	_	_	-	_	41.2	44.97	
	MMLU(5)	acc	23.33	28.92	26.45	43.96	26.4	55.59	
	hellaswag(10)	acc_norm	56.46	50.27	55.69	53.02	70.8	73.13	

Minitron Resources

Poster Session: Fri 13 Dec 11 a.m. — 2 p.m. PST

NeurlPS Poster Page

Minitron Website

HuggingFace Models

