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GitHub based Issue-Reproduction Benchmark

2



Mündler et al. | SWT-Bench | NeurIPS 2024

Code Datasets
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Function-level benchmarks almost saturated by SOTA models

Repository-level benchmarks gaining traction

Focus on Code Synthesis / Repair
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Test generation

Metrics:
Codebase Coverage, Crashes (Fuzzing)

Methods:
Specialized solvers/analyzers, small transformers, bare bone LLMs
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SWT-Bench: 
- Software Testing dataset based on real-world GitHub 

repositories
- 1983 instances (276 in SWT-Bench Lite)
- Task: Generate a test that reproduces a reported user 

issue

Metrics:
- Patch Well-Formedness: prediction is a valid patch
- Success rate ( S ): at least one test fails before a 

ground-truth bug fix is applied and all tests pass after
- Coverage Increase (    dC): Line coverage of modified 

code

SWT-Bench

Software Testing dataset based on real-world GitHub repositories

1983 instances (276 in SWT-Bench Lite)

Task: Generate a test that reproduces a reported user issue

Composition
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Metrics

Patch Well-Formedness: prediction is a valid patch

Success rate ( S ): at least one test fails before a ground-truth bug fix is applied and all tests pass after

Coverage Increase ( dC): Line coverage of modified code
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Definition of Coverage Increase Illustration of Success Rate
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Code Agents

LLMs equipped with tooling

Capable of fixing bugs in large code bases
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Source: Yang et. al:  SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering, Neurips 2024



Can Code Agents write Unit-Tests in 
complex settings?
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Plain LLMs, Specific Methods, Code Agents

ZeroShot

LIBRO

AutoCodeRover

Aider

SWE-Agent

SWE-Agent+
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Code Agents perform surprisingly well
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Coverage IncreaseSuccess Rate
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Execution Feedback helps significantly

SWE-Agent+ is much stronger than SWE-Agent

Leverages feedback from running the test suite.
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Success Rate
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Performance depends on employed model

Smaller models struggle to produce valid patches Valid patches of smaller models have lower 
quality
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Small overlap between solved Repair and Testing

No significant correlation between solvability

Testing and Repairing are distinct tasks
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Zero Shot

SWE-Agent
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Different approaches are complementary

Few tasks solved by all approaches

Employing different methods beneficial
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Cross-validation as promising filter for Repair

Filter the generated Patches by checking S on self-generated tests

More than doubles precision
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More details + Benchmark code

https://github.com/logic-star-ai/swt-bench
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https://github.com/logic-star-ai/swt-bench

