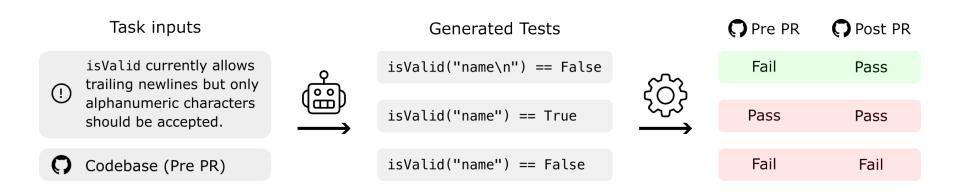


SWT-Bench:

Testing and Validating Real-World Bug-Fixes with Code Agents

Niels Mündler, Mark Niklas Müller, Jingxuan He, Martin Vechev

GitHub based Issue-Reproduction Benchmark



Code Datasets

Function-level benchmarks almost saturated by SOTA models

Repository-level benchmarks gaining traction

Focus on Code Synthesis / Repair

Python Datasets	Code Generation	Test Generation
Single-Function	HumanEval APPS MBPP	TestEval
Repository Level	SWE-Bench RepoBench	SWT-Bench (ours)

Test generation

Metrics:

Codebase Coverage, Crashes (Fuzzing)

Methods:

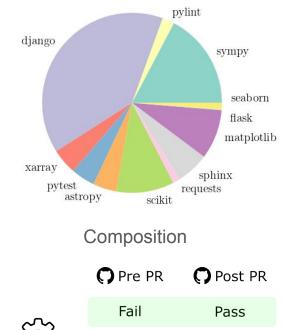
Specialized solvers/analyzers, small transformers, bare bone LLMs

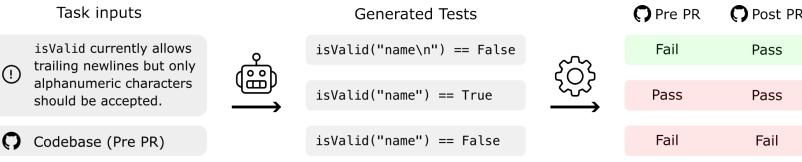
SWT-Bench

Software Testing dataset based on real-world GitHub repositories

1983 instances (276 in SWT-Bench Lite)

Task: Generate a test that reproduces a reported user issue



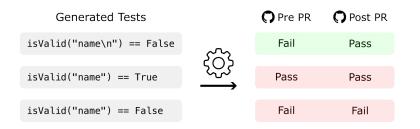


Metrics

Patch Well-Formedness: prediction is a valid patch

Success rate (\mathcal{S}): at least one test fails before a ground-truth bug fix is applied and all tests pass after

Coverage Increase ($\Delta \mathcal{C}$): Line coverage of modified code



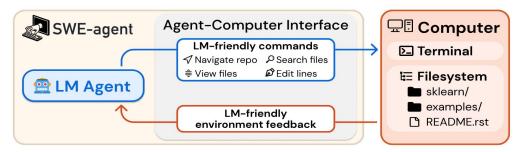


Definition of Coverage Increase Δc

Code Agents

LLMs equipped with tooling

Capable of fixing bugs in large code bases



Source: Yang et. al: SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering, Neurips 2024

Can Code Agents write Unit-Tests in complex settings?

Plain LLMs, Specific Methods, Code Agents

ZeroShot

AutoCodeRover

LIBRO

Aider

SWE-Agent

SWE-Agent+

Code Agents perform surprisingly well



Execution Feedback helps significantly

SWE-Agent+ is much stronger than SWE-Agent

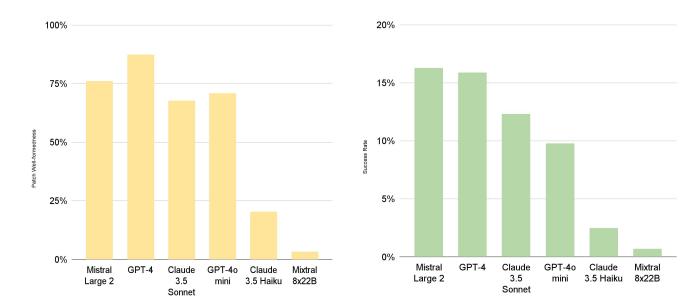
Leverages feedback from running the test suite.

Success Rate $\,\,\mathcal{S}$

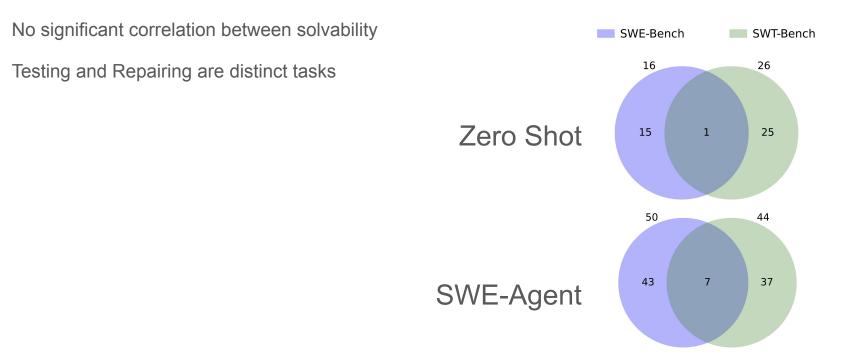
Performance depends on employed model

Smaller models struggle to produce valid patches

Valid patches of smaller models have lower quality



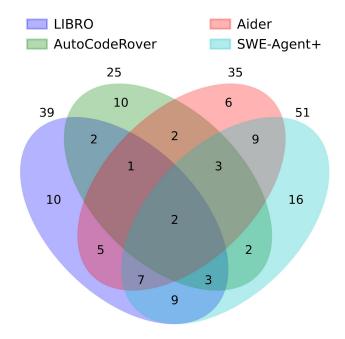
Small overlap between solved Repair and Testing



Different approaches are complementary

Few tasks solved by all approaches

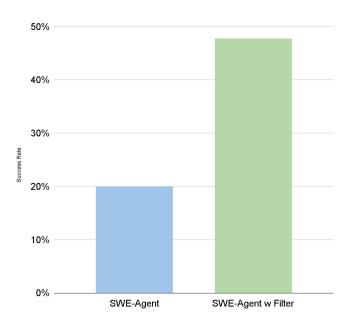
Employing different methods beneficial



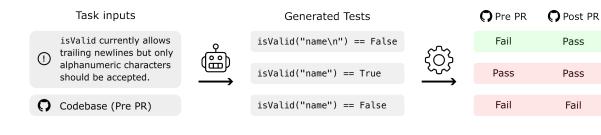
Cross-validation as promising filter for Repair

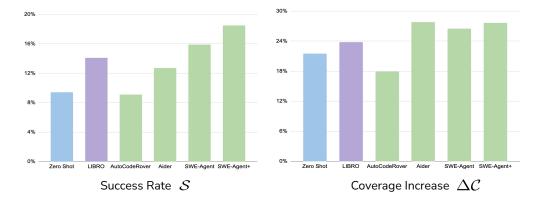
Filter the generated Patches by checking S on self-generated tests

More than doubles precision



More details + Benchmark code





https://github.com/logic-star-ai/swt-bench