IPM-LSTM: A Learning-Based Interior Point Method for Solving Nonlinear Programs

Xi Gao^1 Jinxin Xiong^{2,3} Akang Wang^{2,3} Qihong Duan^1 Jiang Xue^1 Qingjiang Shi^{2,4}

¹School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China

²Shenzhen Research Institute of Big Data, China

³School of Data Science, The Chinese University of Hong Kong, Shenzhen, China

⁴School of Software Engineering, Tongji University, Shanghai, China

38th Conference on Neural Information Processing Systems, December 2024

イロト 不得下 イヨト イヨト 二日

The Interior Point Method

- Problem
- The Classic IPM
- Approximating Solutions to Linear Systems

2 The IPM-LSTM Approach

- Architecture
- Model Training

3 Experiments

- Experimental Settings
- QP
- Convex QCQP
- Simple Non-convex Program
- Performance Analysis of IPM-LSTM

Conclusions

The Interior Point Method

- Problem
- The Classic IPM
- Approximating Solutions to Linear Systems

2 The IPM-LSTM Approach

- Architecture
- Model Training

3 Experiments

- Experimental Settings
- QP
- Convex QCQP
- Simple Non-convex Program
- Performance Analysis of IPM-LSTM

Conclusions

The Interior Point Method Problem

We focus on solving the following NLP (1):

$$\begin{array}{ll} \min_{x \in \mathbb{R}^n} & f(x) \\ \text{s.t.} & h(x) = 0 \\ & x \ge 0 \end{array}$$
 (1)

where the functions $f : \mathbb{R}^n \to \mathbb{R}$ and $h : \mathbb{R}^n \to \mathbb{R}^m$ are all assumed to be twice continuously differentiable.

r

The Classic IPM

By introducing a decreasing sequence of parameters μ converging to zero, the perturbed *Karush-Kuhn-Tucker* (KKT) conditions can be represented as:

$$\nabla f(x) + \lambda^{\top} \nabla h(x) - z = 0 \qquad h(x) = 0$$

diag(z)diag(x)e = μe $x, z \ge 0$ (2)

A one-step Newton's method is employed to solve such a system, aiming to solve systems of linear equations (3).

$$\underbrace{\begin{bmatrix} \nabla^2 f(x) + \lambda^\top \nabla^2 h(x) & \nabla h^\top(x) & -I \\ \nabla h(x) & & \\ \text{diag}(z) & & \text{diag}(x) \end{bmatrix}}_{J} \begin{bmatrix} \Delta x \\ \Delta \lambda \\ \Delta z \end{bmatrix} = -F(x, \lambda, z) \quad (3)$$

The IPM commences with an initial solution (x^0, λ^0, z^0) such that $x^0, z^0 > 0$. At iteration k, the linear system (3) defined by the current iterate (x^k, λ^k, z^k) is solved.

The Classic IPM

Algorithm 1 The classic IPM

Inputs: An initial solution $(x^0, \lambda^0, z^0), \sigma \in (0, 1), k \leftarrow 0$ **Outputs:** The optimal solution (x^*, λ^*, z^*)

- 1: while not converged do
- 2: Update μ^k
- 3: Solve the system $J^k \left[(\Delta x^k)^\top, (\Delta \lambda^k)^\top, (\Delta z^k)^\top \right]^\top = -F^k$
- 4: Choose α^k via a line-search filter method
- $5: \quad (x^{k+1},\lambda^{k+1},z^{k+1}) \leftarrow (x^k,\lambda^k,z^k) + \alpha^k(\Delta x^k,\Delta\lambda^k,\Delta z^k)$
- $6: \quad k \leftarrow k+1$
- 7: end while
 - Solving linear systems is the main computational bottleneck.
 - IPM is difficult to be warm-started.

Can we leverage L2O techniques to expedite IPMs for NLPs?

イロト 不得 トイヨト イヨト

Approximating Solutions to Linear Systems

To avoid high computational costs, the least squares problem (4) is employed to obtain the approximate solution of the IPM linear system.

$$\min_{y} \frac{1}{2} \left\| J^{k} y + F^{k} \right\|^{2} \tag{4}$$

This perspective is similar to the inexact IPM¹.

Assumption 1

At iteration k, we could identify some y^k such that

$$\left\|J^{k}y^{k} + F^{k}\right\| \leq \eta \left[(z^{k})^{\top}x^{k}\right]/n \tag{5}$$

$$\|y^{k}\| \le (1 + \sigma + \eta) \|F_{0}(x^{k}, \lambda^{k}, z^{k})\|.$$
(6)

where $\eta \in (0,1)$ and $F_0(x^k, \lambda^k, z^k)$ denotes $F(x^k, \lambda^k, z^k)$ with $\mu = 0$.

 ¹Stefania Bellavia. "Inexact interior-point method". In: Journal of Optimization Theory and Applications 96 (1998),

 pp. 109–121.

Approximating Solutions to Linear Systems

To satisfy Assumption 1, the approximate solution y^k has to be **bounded** and **accurate enough**, regardless of whether J^k is invertible.

Proposition 1

If (x^k, λ^k, z^k) is generated such that Assumption 1 is satisfied, let (x^*, λ^*, z^*) denote a limit point of the sequence $\{(x^k, \lambda^k, z^k)\}$, then $\{(x^k, \lambda^k, z^k)\}$ converges to (x^*, λ^*, z^*) and $F_0(x^*, \lambda^*, z^*) = 0$.

The Interior Point Method

- Problem
- The Classic IPM
- Approximating Solutions to Linear Systems

2 The IPM-LSTM Approach

- Architecture
- Model Training

3 Experiments

- Experimental Settings
- QP
- Convex QCQP
- Simple Non-convex Program
- Performance Analysis of IPM-LSTM

Conclusions

< A > < E

The IPM-LSTM Approach

Architecture

LSTM networks are considered suitable for solving the least squares problem due to the resemblance between LSTM recurrent calculations and iterative algorithms.

$$y_t := \mathsf{LSTM}_{\theta}\left(\left[y_{t-1}, (J^k)^\top (J^k y_{t-1} + F^k)\right]\right).$$
(7)

Figure 1: The LSTM architecture for solving the least quares problem.

< □ > < □ > < □ > < □ > < □ > < □ >

The IPM-LSTM Approach

Model Training

Base on the least squares problem, we propose a new self-supervised loss function:

$$\min_{\theta} \frac{1}{|\mathcal{M}|} \sum_{M \in \mathcal{M}} \left(\frac{1}{K} \sum_{k=1}^{K} \frac{1}{T} \sum_{t=1}^{T} \frac{1}{2} \left\| J^{k} y_{t}^{k}(\theta) + F^{k} \right\|^{2} \right)_{M},$$

where the subscript M indicates that the corresponding term is associated with instance M. Truncated backpropagation through time is employed to mitigate memory issues.

Figure 2: An illustration of the IPM-LSTM approach. 11/20

Gao, Xiong, Wang, Duan, Xue, Shi

NeurIPS 2024

The Interior Point Method

- Problem
- The Classic IPM
- Approximating Solutions to Linear Systems

2 The IPM-LSTM Approach

- Architecture
- Model Training

3 Experiments

- Experimental Settings
- QP
- Convex QCQP
- Simple Non-convex Program
- Performance Analysis of IPM-LSTM

Conclusions

Experiments

Experimental Settings

Datasets:

The dataset used in our work includes randomly generated benchmarks²³⁴ as well as real-world instances from Globallib. These benchmarks encompass **convex QPs**, **convex QCQPs**, **nonconvex QPs**, and **simple non-convex programs**.

Baselines:

- Traditional optimizer: OSQP, IPOPT.
- L2O algorithms : NN, DC3, DeepLDE, PDL, LOOP-LC, H-Proj.

² Jieqiu Chen and Samuel Burer. "Globally solving nonconvex quadratic programming problems via completely positive programming". In: *Mathematical Programming Computation* 4.1 (2012), pp. 33–52.

³Priya L Donti, David Rolnick, and J Zico Kolter. "DC3: A learning method for optimization with hard constraints". In: (2021).

⁴Enming Liang, Minghua Chen, and Steven Low. "Low complexity homeomorphic projection to ensure neural-network Solution feasibility for optimization over (non-) convex set". In: (2023).

Experiments QP

$$\min_{x \in \mathbb{R}^{n}} \quad \frac{1}{2} x^{\top} Q_{0} x + p_{0}^{\top} x$$
s.t.
$$p_{j}^{\top} x \leq q_{j} \qquad j = 1, \cdots, I$$

$$p_{j}^{\top} x = q_{j} \qquad j = l+1, \cdots, m$$

$$x_{i}^{L} \leq x_{i} \leq x_{i}^{U} \qquad i = 1, \cdots, n$$
(8)

Table 1: Computational results on convex QPs.

Method			End-to	IPOPT (warm start)		Total	Gain 🛧					
	Obj.↓	Max ineq. \downarrow	Mean ineq. ↓	Max eq. \downarrow	Mean eq. \downarrow	Time (s) \downarrow	Ite.↓	Time (s) \downarrow	Time (s)*	(Ite./ Time)		
Convex QPs (RHS)												
OSQP	-29.176	0.000	0.000	0.000	0.000	0.009	-	-	-	-		
IPOPT	-29.176	0.000	0.000	0.000	0.000	0.642	12.5	-	-	-		
NN	-26.787	0.000	0.000	0.631	0.235	< 0.001	10.5	0.560	0.560	16.0%/12.8%		
DC3	-26.720	0.002	0.000	0.000	0.000	< 0.001	10.2	0.535	0.535	18.4%/16.7%		
DeepLDE	-3.697	0.000	0.000	0.000	0.000	< 0.001	12.5	0.648	0.648	0.0%/-0.9%		
PDL	-28.559	0.421	0.122	0.024	0.000	< 0.001	9.7	0.514	0.514	22.4%/19.9%		
LOOP-LC	-28.512	0.000	0.000	0.000	0.000	< 0.001	10.8	0.565	0.565	13.6%/12.0%		
H-Proj	-23.257	0.000	0.000	0.000	0.000	< 0.001	11.2	0.605	0.605	10.4%/5.8%		
IPM-LSTM	-29.050	0.000	0.000	0.002	0.001	0.175	7.2	0.370	0.545	42.4%/15.1%		
Convex QPs (ALL)												
OSQP	-33.183	0.000	0.000	0.000	0.000	0.009	-	-	-	-		
IPOPT	-33.183	0.000	0.000	0.000	0.000	0.671	12.9	-	-	-		
IPM-LSTM	-32.600	0.000	0.000	0.003	0.001	0.195	8.3	0.426	0.621	35.7%/7.5%		

NeurIPS 2024

Experiments QP

Instance	IPOPT			IPM-LSTM			IPOPT (warm-start)			Total	Gain
	Obj. Ite. Time (s		Time (s)	Obj. Max Vio.		Time (s) Obj.		Ite. Time (s)		Time (s)	(Ite./ Time)
qp1	0.001	52.0	0.707	0.045	0.008	0.017	0.001	42.0	0.559	0.576	19.2%/18.5%
qp2	0.001	69.0	0.674	0.034	0.008	0.029	0.001	40.0	0.347	0.376	42.0%/ 44.2%
st_rv1	-58.430	215.0	0.955	-34.563	0.000	0.009	-58.867	168.0	0.626	0.635	21.9%/33.5%
st_rv2	-67.083	190.8	0.956	-30.955	0.000	0.011	-67.083	120.5	0.482	0.494	36.8%/38.1%
st_rv3	0.000	55.0	0.781	0.818	0.000	0.017	0.000	47.0	0.616	0.634	14.5%/18.8%
st_rv7	-132.019	449.0	2.445	-61.428	0.000	0.016	-131.756	162.0	0.705	0.721	63.9%/70.5%
st_rv9	-126.945	655.0	3.457	-58.415	0.000	0.026	-127.652	408.0	1.830	1.856	37.7%/46.3%
qp30_15_1_1	37.767	16.0	0.198	37.787	0.002	0.021	37.767	9.0	0.083	0.104	43.7%/47.5%

Table 3: Computational results on non-convex QPs.

Max Vio. denotes the maximum constraint violation.

3

Experiments Convex QCQP

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} x^\top Q_0 x + p_0^\top x \\ \text{s.t.} \quad x^\top Q_j x + p_j^\top x \le q_j \qquad j = 1, \cdots, l \\ p_j^\top x = q_j \qquad j = l+1, \cdots, m \\ x_i^L \le x_i \le x_i^U \qquad i = 1, \cdots, n$$

Table 2: Computational results on convex QCQPs.

Method			End-to	IPOPT (warm start)		Total	Gain 🛧			
	Obj.↓	Max ineq.↓	Mean ineq. ↓	Max eq. \downarrow	Mean eq. \downarrow	Time (s) \downarrow	Ite.↓	Time (s) \downarrow	Time (s)*	(Ite./ Time)
Convex QCQPs (RHS)										
IPOPT	-39.162	0.000	0.000	0.000	0.000	1.098	12.5	-	-	-
NN	-2.105	0.000	0.000	0.552	0.169	< 0.001	12.1	1.311	1.311	3.2%/-19.4%
DC3	-35.741	0.000	0.000	0.000	0.000	0.005	9.6	1.051	1.051	20.7%/4.8%
DeepLDE	-15.132	0.000	0.000	0.000	0.000	< 0.001	11.5	1.222	1.222	8.0%/-11.3%
PDL	-39.089	0.005	0.000	0.015	0.005	< 0.001	8.9	1.013	1.013	28.8%/7.7%
H-Proj	-36.062	0.000	0.000	0.000	0.000	< 0.001	9.8	1.070	1.070	21.6%/2.6%
IPM-LSTM	-38.540	0.000	0.000	0.004	0.001	0.205	8.0	0.825	1.030	36.0% /6.2%
Convex QCQPs (ALL)										
IPOPT	-39.868	0.000	0.000	0.000	0.000	0.801	12.4	-	-	-
IPM-LSTM	-38.405	0.004	0.000	0.001	0.000	0.203	8.3	0.507	0.710	33.1%/11.4%
							 ■ □ 1 			

Gao, Xiong, Wang, Duan, Xue, Shi

IPM-LSTN

NeurIPS 2024 1

Experiments

Simple Non-convex Program

Method			End-to	IPOPT (warm start)		Total	Gain 🛧				
	Obj.↓	Max ineq. \downarrow	Mean ineq. \downarrow	Max eq.↓	Mean eq. \downarrow	Time (s) \downarrow	Ite.↓	Time (s) \downarrow	Time (s) [≁]	(Ite./ Time)	
Non-convex Programs (RHS): $n = 200, m_{ineq} = 100, m_{eq} = 100$											
IPOPT	-22.375	0.000	0.000	0.000	0.000	0.717	13.1	-		-	
DC3	-20.671	0.000	0.000	0.000	0.000	< 0.001	10.9	0.603	0.603	16.8%/15.9%	
NN	-20.736	0.000	0.000	0.632	0.235	< 0.001	11.0	0.607	0.607	16.0%/20.7%	
DeepLDE	-20.074	0.000	0.000	0.000	0.000	< 0.001	10.5	0.576	0.576	19.8%/19.7%	
PDL	-21.859	0.589	0.167	0.026	0.000	< 0.001	10.9	0.600	0.600	16.8%/16.3%	
LOOP-LC	-21.932	0.000	0.000	0.000	0.000	< 0.001	10.2	0.558	0.558	22.1%/22.2%	
H-Proj	-19.097	0.000	0.000	0.006	0.000	< 0.001	11.5	0.634	0.634	12.2%/11.6%	
IPM-LSTM	-22.213	0.000	0.000	0.002	0.001	0.175	9.5	0.533	0.708	27.5% /1.3%	
Non-convex Programs (ALL): $n = 200, m_{ineq} = 100, m_{eq} = 100$											
IPOPT	-25,1043	0.000	0.000	0.000	0.000	0.768	14.3	-	-	-	
IPM-LSTM	-20.288	0.000	0.000	0.006	0.002	0.195	12.1	0.639	0.834	15.4% /-8.6%	
			Non-convex Pr	ograms (RH	S) : $n = 100, n$	$n_{\text{ineq}} = 50, m$	eq = 50				
IPOPT	-11.590	0.000	0.000	0.000	0.000	0.289	12.9	-	-	-	
DC3	-10.660	0.000	0.000	0.000	0.000	< 0.001	11.6	0.259	0.259	11.6%/10.4%	
NN	-10.020	0.000	0.000	0.350	0.130	< 0.001	11.4	0.253	0.253	11.6%/12.5%	
DeepLDE	4.870	0.000	0.000	0.008	0.000	< 0.001	13.1	0.294	0.294	-1.6%/-1.7%	
PDL	-11.385	0.006	0.002	0.001	0.000	< 0.001	9.6	0.207	0.207	25.6%/28.4%	
LOOP-LC	-11.296	0.000	0.000	0.000	0.000	< 0.001	10.1	0.217	0.217	21.7%/24.9%	
H-Proj	-9.616	0.000	0.000	0.000	0.000	< 0.001	11.3	0.252	0.252	12.4%/12.8%	
IPM-LSTM	-11.421	0.000	0.000	0.002	0.001	0.044	8.9	0.181	0.225	31.0%/22.1%	
Non-convex Programs (ALL): $n = 100, m_{ineq} = 50, m_{eq} = 50$											
IPOPT	-12.508	0.000	0.000	0.000	0.000	0.305	13.2	-	-	-	
IPM-LSTM	-12.360	0.000	0.000	0.001	0.000	0.044	8.0	0.149	0.193	39.4%/36.7%	

Table 8: Computational results on non-convex programs

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Gao, Xiong, Wang, Duan, Xue, Shi

NeurIPS 2024 17 / 20

Experiments

Performance Analysis of IPM-LSTM

Figure 3: The performance analysis of IPM-LSTM on a convex QP (RHS).

Gao, Xiong, Wang, Duan, Xue, Shi

IPM-LST

NeurIPS 2024

The Interior Point Method

- Problem
- The Classic IPM
- Approximating Solutions to Linear Systems

2 The IPM-LSTM Approach

- Architecture
- Model Training

3 Experiments

- Experimental Settings
- QP
- Convex QCQP
- Simple Non-convex Program
- Performance Analysis of IPM-LSTM

Conclusions

< (17) > < (17) > <

Conclusions

Our work can be summarized as follows:

- Approximating Solutions to Linear Systems via LSTM.
- A new self-supervised loss function.
- A new learning-based method based on IPM that can simultaneously keep feasibility and optimality.
- Two-Stage Framework.
- Better performance in end-to-end solutions and warm-starting IPOPT.