

Connectivity Shapes Implicit Regularization in Matrix Factorization Models for Matrix Completion

Zhiwei Bai

Shanghai Jiao Tong University

School of Mathematical Sciences & Institute of Natural Sciences September 26, 2024

目录 CONTENTS

Introduction and Motivation +

- Connectivity Affects Implicit Regularization;
- **3** Training Dynamics Analysis **f**
- 4 Implicit Regularization Analysis;
- **6** Discussion and Conclusion **f**

1. Introduction and Motivation

Background: DNNs as Function Approximator

• Deep Neural Networks (DNNs) have achieved remarkable success in various fields.

• DNNs as Function Approximator

f()= "5-5"(next move)

• Key Structure: Composition of Functions Layer by Layer $f_{\theta}^{[l]}(\boldsymbol{x}) = \sigma(\boldsymbol{W}^{[l]}f_{\theta}^{[l-1]}(\boldsymbol{x}) + \boldsymbol{b}^{[l]}), l = 1, 2, \cdots, L-1.$ $f_{\theta}^{[l]}(\boldsymbol{X}) = \sum_{i=1}^{h} \operatorname{softmax_{row}} \left(\frac{\boldsymbol{X} \boldsymbol{W}_{\boldsymbol{Q}_{i}} \boldsymbol{W}_{\boldsymbol{K}_{i}}^{\top} \boldsymbol{X}^{\top}}{\sqrt{d_{h}}}\right) \boldsymbol{X} \boldsymbol{W}_{V_{i}} \boldsymbol{W}_{\boldsymbol{O}_{i}}$

Zhiwei Bai

Implicit Regularization in Matrix Factorization Models

September 26, 2024 4»37

Background: How to Understand the Learning Behavior?

- Theory: Understanding the learning behavior
- DNNs: Overparameterization

Q Q: Which Global Minimum is learned?

- Mathematical Formulation
 - Empirical risk:

$$R_S(oldsymbol{ heta}) = rac{1}{n}\sum_{i=1}^n \ell(oldsymbol{f}(oldsymbol{x}_i;oldsymbol{ heta}),oldsymbol{y}_i)$$

- \circ Model: $oldsymbol{f}(oldsymbol{x};oldsymbol{ heta})$
- \circ Data: $S = \{(oldsymbol{x}_i, oldsymbol{y}_i)\}_{i=1}^n$
- \circ Loss function: $\ell(\cdot, \cdot)$
- \circ Learning dynamics: $\dot{oldsymbol{ heta}}=abla R_S(oldsymbol{ heta})$ with $oldsymbol{ heta}_0\sim N(oldsymbol{0},\sigma^2)$

 \mathbf{Q} How to analyze the learning dynamics?

Zhiwei Bai

Implicit Regularization in Matrix Factorization Models

September 26, 2024 [5»37

Background: the Generalization Mystery

• DNNs' capacity is very large

Sufficiently large for memorizing the entire random dataset

Q Q: Is explicit regularization necessary?

[Zhang et al.] Understanding deep learning requires rethinking generalization. ICLR 2017 (Best Paper)

• DNNs generalize well without explicit regularization

model	# params	random crop	weight decay	train accuracy	test accuracy	
Inception	1,649,402	yes	yes	100.0		Not ificier
		yes	no	100.0	89.31	
		no	yes	100.0	86.03	
		no	no	100.0	85.75	
(fitting random labels)		no	no	100.0	9.78	
Inception w/o		no	yes	100.0	83.00	
BatchNorm		no	no	100.0	82.00	
(fitting random labels)		no	no	100.0	10.12	
Alexnet	1,387,786	yes	yes	99.90		Not essar
		yes	no	99.82	79.66	loodin
		no	yes	100.0	77.36	
		no	no	100.0	76.07	
(fitting random labels)		no	no	99.82	9.86	
MLP 3x512	1,735,178	no	yes	100.0	53.35	
		no	no	100.0	52.39	
(fitting random labels)		no	no	100.0	10.48	
MLP 1x512	1,209,866	no	yes	99.80	50.39	
		no	no	100.0	50.51	
(fitting random labels)		no	no	99.34	10.61	

Explicit regularization may improve generalization performance, but is neither necessary nor sufficient

Zhiwei Bai

The Generalization Mystery \implies Implicit Regularization

- Matrix Completion
 - $\begin{bmatrix} 1 & 2 & 3 \\ \star & 4 & \star \\ \star & \star & 9 \end{bmatrix} \implies \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix}$
- Non–Factorization Model (Overparameterization):

$$oldsymbol{f}_{oldsymbol{ heta}} = oldsymbol{W} \in \mathbb{R}^{d imes d}, oldsymbol{ heta} = ext{vec}(oldsymbol{W}) \in \mathbb{R}^{d^2}$$

- Linear w.r.t. heta
- Convex Optimization

 $R_S(oldsymbol{ heta}) = rac{1}{n} \sum_{k=1}^n ((oldsymbol{f}_{oldsymbol{ heta}})_{i_k j_k} - oldsymbol{M}_{i_k j_k})^2$

• Implicit Regularization $(\dot{oldsymbol{ heta}} = -
abla R_S(oldsymbol{ heta}))$

$$\min_{oldsymbol{ heta}\inoldsymbol{\Theta}} \|oldsymbol{ heta}-oldsymbol{ heta}_0\|_2 = \|oldsymbol{W}-oldsymbol{W}_0\|_F$$

Matrix Completion

$$\begin{bmatrix} 1 & 2 & 3 \\ \star & 4 & \star \\ \star & \star & 9 \end{bmatrix} \implies \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

• Matrix Factorization Model (Composition Structure, Overparameterization)

$$oldsymbol{f}_{oldsymbol{ heta}} = oldsymbol{A}oldsymbol{B} \in \mathbb{R}^{d imes d}, oldsymbol{A}, oldsymbol{B} \in \mathbb{R}^{d imes d}$$

- Non–Linear w.r.t. θ
- Non-Convex Optimization $R_S(oldsymbol{ heta}) = rac{1}{n} \sum_{k=1}^n ((oldsymbol{f}_{oldsymbol{ heta}})_{i_k j_k} oldsymbol{M}_{i_k j_k})^2$
- Implicit Regularization $(\dot{\boldsymbol{\theta}} = -\nabla R_S(\boldsymbol{\theta}))$???????????

Zhiwei Bai

Implicit Regularization in Matrix Factorization Models

September 26, 2024

7≫37

Recent Works on Implicit Regularization in Matrix Factorization

Zhiwei Bai

Implicit Regularization in Matrix Factorization Models

September 26, 2024

8 ≫ 37

Are these characterizations sufficient? Do they describe the whole picture of matrix factorization models?

Examples

• Observation Matrices Commute:

$$E_{ij}E_{mn} = \delta_{jm}E_{in} = E_{mn}E_{ij} = \delta_{ni}E_{mj}$$

$$\implies \begin{bmatrix} \times & \star & \star & \checkmark \\ \times & \star & \star & \star \end{bmatrix}$$

• Counterexample:

$$\begin{bmatrix} 0 & 1 \\ 2 & \star \end{bmatrix} \xrightarrow{GD} \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ \star & 3 \end{bmatrix} \xrightarrow{GD} \begin{bmatrix} 1 & 2 \\ 1.5 & 3 \end{bmatrix}$$

 GD still learned the minimal nuclear norm solution although the observation matrices do not commute

- Restricted Isometry Property (RIP): The measurement operator \mathcal{A} satisfies the (δ, r) RIP if $(1-\delta) \|\boldsymbol{Z}\|_{\mathrm{F}}^2 \leq \|\mathcal{A}(\boldsymbol{Z})\|_2^2 \leq (1+\delta) \|\boldsymbol{Z}\|_{\mathrm{F}}^2$ for all $\boldsymbol{Z} \in \mathbb{R}^{d \times d}$ with $\mathrm{rank}(\boldsymbol{Z}) \leq r$
- Counterexample:
 - $\begin{bmatrix} 1 & 2 \\ 3 & \star \end{bmatrix} \xrightarrow{GD} \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 10 & \star \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 10 & \star \end{bmatrix} \xrightarrow{GD} \begin{bmatrix} 1 & 2 \\ 10 & 20 \end{bmatrix}$
- GD still learned the minimal rank solution although the observation matrices do not satisfy the (δ,r) RIP condition

Zhiwei Bai

How to construct a unified understanding of when, how, and why they achieve different implicit regularization effects?

Empirical Observations

• The connectivity of observed data affects the implicit regularization

- Low rank bias in connected case
- Low nuclear norm bias in certain disconnected case

Zhiwei Bai

Implicit Regularization in Matrix Factorization Models

September 26, 2024

12»37

2. Connectivity Affects Implicit Regularization

Definition of Connectivity

Observation matrix $oldsymbol{P}$

$$m{P}_{ij} = egin{cases} 1, & m{M}_{ij} ext{ is observed and non-zero} \ 0, & ext{otherwise} \end{cases}$$

Associated Observation Graph G_M

Definition 1 (Associated Observation Graph). The associated observation graph G_M is the bipartite graph with adjacency matrix $\begin{bmatrix} \mathbf{0} & \mathbf{P}^\top \\ \mathbf{P} & \mathbf{0} \end{bmatrix}$, with isolated vertices removed.

Connectivity

Definition 2. Connected: G_M is connected; Disconnected: G_M is disconnected The connected components of M are defined as the connected components of G_M .

Zhiwei Bai

Implicit Regularization in Matrix Factorization Models

September 26, 2024 [14>37

Examples of Connectivity

Disconnectivity with Complete Bipartite Components

Definition 3. Disconnectivity with Complete Bipartite Components: Graph G_M is disconnected and each connected component forms a complete bipartite subgraph.

Zhiwei Bai

Connectivity Affects Implicit Regularization

• Disconnected
$$\boldsymbol{M}_1 = \begin{bmatrix} 1 & 2 & \star \\ 3 & \star & \star \\ \star & \star & 5 \end{bmatrix}$$

• Disconnected (complete bipartite components) $M_2 = \begin{bmatrix} 1 & 2 & \star \\ 3 & 4 & \star \\ \star & \star & 5 \end{bmatrix}$

$$oldsymbol{M}_3 = egin{bmatrix} 1 & 2 & \star \ 3 & 4 & \star \ 6 & \star & 5 \end{bmatrix}$$

Zhiwei Bai

Implicit Regularization in Matrix Factorization Models

September 26, 2024 [16»37

Connected Case—Initialization Matters

- Large initialization: rank-4
- Small initialization: rank-3

Q Learning lowest–rank solution in infinitesimal initialization

Zhiwei Bai

Implicit Regularization in Matrix Factorization Models

September 26, 2024 [17»37

Connected Case—Traversing Progressive Optima

• Gradient Norm during Training

- Training Loss: stepwise decline
- Saddle Points: Experience optimal approximation of each rank

\mathbf{O} Traversing progressive optima at each rank

Zhiwei Bai

Implicit Regularization in Matrix Factorization Models

September 26, 2024 [18»37

Connected Case—Alignment of row(A) and col(B)

• Evolution of Singular Values

(f) Singular values of A (g) Singular values of B (h) Singular values of W_{aug}

Г

Rank increases step by step

•
$$\mathrm{rank}(\boldsymbol{A}) = \mathrm{rank}\left(\boldsymbol{B}^{ op}\right) = \mathrm{rank}\left(\boldsymbol{W}_{\mathrm{aug}}\right)$$
, where $\boldsymbol{W}_{\mathrm{aug}} = \left| egin{matrix} \boldsymbol{A} \\ \boldsymbol{B}^{ op} \end{array}
ight.$

 \implies row(A) = col(B), which induces an invariant manifold in theoretical analysis

Zhiwei Bai

Implicit Regularization in Matrix Factorization Models

September 26, 2024 19»37

Disconnected Case—Alignment of row(A) and col(B)

• Evolution of Singular Values

- Alignment of the row space of $oldsymbol{A}$ and the column space of $oldsymbol{B}$: $\mathrm{row}(oldsymbol{A}) = \mathrm{col}(oldsymbol{B})$
- Lowest-rank solution is not learned (rank-2) in disconnected case!
- Lowest nuclear norm solution is learned in this disconnected case

Zhiwei Bai

Disconnected Case—Learn Sub-optimal Saddle Point

• Dynamics: decouple into two independent systems in the disconnected case

$$egin{aligned} \dot{oldsymbol{a}}_i &= -rac{2}{n}\sum_{j\in I_i}{(oldsymbol{a}_i\cdotoldsymbol{b}_{\cdot,j}-oldsymbol{M}_{ij})oldsymbol{b}_{\cdot,j}^ op, i\in\{1,3\}} & egin{aligned} \dot{oldsymbol{a}}_2 &= -rac{2}{n}{(oldsymbol{a}_2\cdotoldsymbol{b}_{\cdot,2}-oldsymbol{M}_{22})oldsymbol{b}_{\cdot,2}^ op } \ \dot{oldsymbol{b}}_{\cdot,j} &= -rac{2}{n}\sum_{i\in I_j}{(oldsymbol{a}_i\cdotoldsymbol{b}_{\cdot,j}-oldsymbol{M}_{ij})oldsymbol{a}_i^ op, j\in\{1,3\}} & egin{aligned} \dot{oldsymbol{b}}_2 &= -rac{2}{n}{(oldsymbol{a}_2\cdotoldsymbol{b}_{\cdot,2}-oldsymbol{M}_{22})oldsymbol{b}_{\cdot,2}^ op } \ \dot{oldsymbol{b}}_{\cdot,j} &= -rac{2}{n}{(oldsymbol{a}_2\cdotoldsymbol{b}_{\cdot,2}-oldsymbol{M}_{1j})oldsymbol{a}_2^ op } \ \dot{oldsymbol{b}}_{\cdot,j} &= \{1,3\} & egin{aligned} \dot{oldsymbol{b}}_{\cdot,j} &= -rac{2}{n}{(oldsymbol{a}_2\cdotoldsymbol{b}_{\cdot,2}-oldsymbol{M}_{1j})oldsymbol{a}_2^ op } \ \dot{oldsymbol{b}}_{\cdot,j} &= -rac{2}{n}{(oldsymbol{a}_2\cdotoldsymbol{b}_{\cdot,2}-oldsymbol{M}_{1j})oldsymbol{a}_2^ op \\ \dot{oldsymbol{b}}_{\cdot,j} &= -rac{2}{n}{(oldsymbol{a}_2\cdotoldsymbol{b}_{\cdot,j}-oldsymbol{M}_{1j})oldsymbol{a}_2^ op \\ \dot{oldsymbol{b}}_{\cdot,j} &= -rac{2}{n}{(oldsymbol{a}_2\cdotoldsymbol{b}_{\cdot,j}-oldsymbol{M}_{1j})oldsymbol{a}_2^ op \\ \dot{oldsymbol{b}}_{\cdot,j} &= -rac{2}{n}{(oldsymbol{a}_2\cdotoldsymbol{b}_{\cdot,j}-oldsymbol{b}_{\cdot,j}-oldsymbol{b}_{\cdot,j})oldsymbol{b}_{\cdot,j} &= -rac{2}{n}{(oldsymbol{a}_2\cdotoldsymbol{b}_{\cdot,j}-oldsymbol{b}_{\cdot,j}-oldsymbol{b}_{\cdot,j}-oldsymbol{b}_{\cdot,j}-oldsymbol{b}_{\cdot,j}-oldsymbol{b}_{\cdot,j}-oldsymbol{b}_{\cdot,j}-oldsymbol{b}_{\cdot,j}-oldsymbol{b}_{\cdot,j}-oldsymbol{b}_{\cdot,j}-oldsymbol{b}_{\cdot,j}-oldsymbol{b}_{\cdot,j}-oldsymbol{b}_{\cdot,j}-oldsymbol{b}_{\cdot,j}-oldsymbol{b}_{\cdot,j}-oldsymbol{b}_{\cdot,j}-oldsymbol{b}_{\cdot,$$

Zhiwei Bai

Implicit Regularization in Matrix Factorization Models

September 26, 2024 21»37

3. Training Dynamics Analysis

Hierarchical Intrinsic Invariant Manifold

Hierarchical Intrinsic Invariant Manifold (HIIM)

Proposition 1 (Hierarchical Intrinsic Invariant Manifold (HIIM)). Let $f_{\theta} = AB$ be a matrix factorization model and $\{\alpha_1, \cdots, \alpha_k\}$ be k linearly independent vectors. Define the manifold Ω_k as

 $\Omega_k := \Omega_k (\alpha_1, \cdots, \alpha_k) = \{ \theta = (A, B) \mid row(A) = col(B) = span \{ \alpha_1, \cdots, \alpha_k \} \}$ The manifold Ω_k possesses the following properties:

(1) Invariance under Gradient Flow: Given data S and the gradient flow dynamics $\dot{\theta} = -\nabla R_S(\theta)$, if the initial point $\theta_0 \in \Omega_k$, then $\theta(t) \in \Omega_k$ for all $t \ge 0$.

(2) Intrinsic Property: Ω_k is a data-independent invariant manifold, meaning that for any data S, Ω_k remains invariant under the gradient flow dynamics.

(3) Hierarchical Structure: The manifolds Ω_k form a hierarchy: $\Omega_0 \subsetneqq \Omega_1 \subsetneqq \cdots \gneqq \Omega_{k-1} \gneqq \Omega_k$.

Zhiwei Bai

Implicit Regularization in Matrix Factorization Models

September 26, 2024 23»37

Disconnected Case: Intrinsic Sub-\mathbf{\Omega}_k Invariant Manifold

${\cal S}$ Intrinsic Sub– ${f \Omega}_k$ Invariant Manifold

Proposition 2 (Intrinsic Sub- Ω_k Invariant Manifold). Let $f_{\theta} = AB$ be a matrix factorization model, M be an incomplete matrix and Ω_k be an invariant manifold defined in Prop. 1. If M is disconnected with m connected components, then there exist m sub- Ω_k manifolds ω_k such that $\omega_k \subsetneq \Omega_k$, each possessing the following properties:

(1) Invariance under Gradient Flow: Given data S and the gradient flow dynamics $\dot{\theta} = -\nabla R_S(\theta)$, if the initial point $\theta_0 \in \omega_k$, then $\theta(t) \in \omega_k$ for all $t \ge 0$.

(2) Intrinsic Property: ω_k is a data-value-independent invariant manifold, meaning that for a fixed sampling pattern in M and any observed values S, ω_k remains invariant under the gradient flow.

(3) Strict Subset Relation: The output set $\{f_{\theta} \mid \theta \in \omega_k\}$ is a proper subset of $\{f_{\theta} \mid \theta \in \Omega_k\}$, namely, $\{f_{\theta} \mid \theta \in \omega_k\} \subsetneq \{f_{\theta} \mid \theta \in \Omega_k\}$

Zhiwei Bai

Implicit Regularization in Matrix Factorization Models

September 26, 2024 24»37

Intuitive Illustration

• Illustration of Training Trajectories

Blue line represents the trajectory converging to the lowest-rank solution. Red line represents the actual trajectory experienced by the model

- Connected case: Model traverses with invariant manifold $\mathbf{\Omega}_k$
- Disconnected case:
 - \circ Sub- $\mathbf{\Omega}_k$ invariant manifold emerges
 - \circ Each sub- Ω_k induces a suboptimal saddle point
 - Sub-optima prevent the model from learning the lowest-rank solution

Zhiwei Bai

Loss Landscape does not Contain any Local Minima

Loss Landscape

Theorem 1 (Loss Landscape). Given any data S, the critical points of $R_S(\theta)$ are either strict saddle points or global minima.

• Gradient descent easily escapes saddle points

Zhiwei Bai

Assumptions for Encountered Critical Points

Assumption 1 Top Eigenvalue

Assumption 1 (Top Eigenvalue). Let $\delta M = (A_c B_c - M)_{S_x}$ be the residual matrix at the critical point $\theta_c = (A_c, B_c)$. Assume that the top singular value of the matrix δM is unique.

Assumption 2 Second–order Stationary Point

Assumption 2 (Second-order Stationary Point). Let Ω be an Ω_k invariant manifold or sub- Ω_k invariant manifold defined in Prop. 1 or 2. Assume θ_c is a second-order stationary point within Ω , i.e., $\nabla R_S(\theta_c) = 0$ and $\theta^{\top} \nabla^2 R_S(\theta_c) \theta \ge 0$ for all $\theta \in \Omega$.

Zhiwei Bai

Implicit Regularization in Matrix Factorization Models

September 26, 2024 27»37

Characterization of Training Dynamics

Transition to the Next Rank–level Invariant Manifold

Theorem 2 (Transition to the Next Rank-level Invariant Manifold). Consider the dynamics $\dot{\theta} = -\nabla R_S(\theta)$. Let $\varphi(\theta_0, t)$ denote the value of $\theta(t)$ when $\theta(0) = \theta_0$. Let Ω be an Ω_k or sub- Ω_k invariant manifold. Let $\theta_c \in \Omega$ be a critical point satisfying Assump. 1 and 2. Then, for randomly selected θ_0 , with probability 1 with respect to θ_0 , the limit

$$ilde{arphi}\left(oldsymbol{ heta}_{c},t
ight):=\lim_{lpha
ightarrow0}arphi\left(oldsymbol{ heta}_{c}+lphaoldsymbol{ heta}_{0},t+rac{1}{\lambda_{1}} ext{log}\,rac{1}{lpha}
ight)$$

exists and falls into an invariant manifold Ω_{k+1} . Here λ_1 is the top eigenvalue of $-\nabla^2 R_S (\boldsymbol{\theta}_c)$.

Zhiwei Bai

Implicit Regularization in Matrix Factorization Models

September 26, 2024 28»37

Proof Sketch

- Linear Approximation near critical point $\boldsymbol{\theta}_c$: $\frac{d\boldsymbol{\theta}}{dt} \approx H(\boldsymbol{\theta}_0 - \boldsymbol{\theta}_c).$
- Solution $\theta(t) = e^{tH}(\theta_0 \theta_c) + \theta_c$, specifically $\theta(t) = \sum_{i=1}^s \sum_{j=1}^{l_i} e^{\lambda_i t} \langle \theta_0 - \theta_c, q_{ij} \rangle q_{ij} + \theta_c$
- Dominant eigenvalue trajectory:

$$oldsymbol{ heta}(t_0) = \sum_{j=1}^{l_1} e^{\lambda_1 t_0} \langle oldsymbol{ heta}_0 - oldsymbol{ heta}_c, q_{1j}
angle q_{1j} + O(e^{\lambda_2 t_0}) \; ,$$

- The first principal component $\sum_{j=1}^{l_1} e^{\lambda_1 t_0} \langle \theta_0 \theta_c, q_{1j} \rangle q_{1j}$ corresponds to an Ω_1 invariant manifold under Assump. 1 and 2
- Escaping $oldsymbol{ heta}_c$ increases rank by 1, entering Ω_{k+1}

• Escape from the top eigendirection

 $col(\boldsymbol{B})$

4. Implicit Regularization Analysis

Minimum Rank Regularization

Minimum Rank Regularization

Theorem 3 (Minimum Rank). Consider the dynamics $\dot{\theta} = -\nabla R_S(\theta)$, where $\theta(t) = (A(t), B(t))$, and denote $W_t = A(t)B(t)$. Assume W_t achieves an optimal within each invariant manifold Ω_k . For a full rank initialization W_0 , if the limit $\widehat{W} = \lim_{\alpha \to 0} W_{\infty}(\alpha W_0)$ exists and is a global optimum with $\widehat{W}_{ij} = M_{ij}$ for all $(i, j) \in S_x$, then

 $\widehat{oldsymbol{W}} \in \mathrm{argmin}_{oldsymbol{W}} \mathrm{rank}(oldsymbol{W}) \quad ext{ s.t. } \quad oldsymbol{W}_{ij} = oldsymbol{M}_{ij}, orall (i,j) \in S_{oldsymbol{x}}$

• In connected case, experiments provide strong evidence that model achieves an optimal within each invariant manifold $oldsymbol{\Omega}_k$

Zhiwei Bai

Implicit Regularization in Matrix Factorization Models

September 26, 2024 31»37

Minimum Nuclear Norm Regularization

In disconnected case, the minimum nuclear norm may still serve as a characterization

Minimum Nuclear Norm Regularization

Theorem 4 (Minimum Nuclear Norm Guarantee). Consider the dynamics $\dot{\theta} = -\nabla R_S(\theta)$, where $\theta(t) = (A(t), B(t))$, and let $W_t = A(t)B(t)$. If the observation graph associated with the incomplete matrix M is disconnected with complete bipartite components, and if for a full rank initialization W_0 , the limit $\widehat{W} = \lim_{\alpha \to 0} W_{\infty}(\alpha W_0)$ exists and is a global optimum with $\widehat{W}_{ij} = M_{ij}$ for all $(i, j) \in S_x$, then

 $oldsymbol{\widehat{W}} \in \mathop{\mathrm{argmin}}_{oldsymbol{W}} \|oldsymbol{W}\|_* \quad ext{s.t.} \quad oldsymbol{W}_{ij} = oldsymbol{M}_{ij}, orall (i,j) \in S_{oldsymbol{x}}$

Zhiwei Bai

5. Discussion and Conclusion

Generalize to Neural Networks: From Linear to Nonlinear

- Matrix Factorization: $f_{ heta} = AB$
- Linear w.r.t input $oldsymbol{x}$
- Implicit Bias: Low rank

Neural Networks:

$$f_{oldsymbol{ heta}}(oldsymbol{x}) = \sum_{i=1}^m a_i \sigma(oldsymbol{w}_i^ op oldsymbol{x})$$

- Non–Linear w.r.t input $oldsymbol{x}$
- Implicit Bias: ??????

• Model Rank for Non–linear Models:

$$ext{rank}_{f_{m{ heta}}}\left(m{ heta}^{*}
ight):=\dim\left(ext{span}\left\{\partial_{ heta_{i}}f\left(\cdot;m{ heta}^{*}
ight)
ight\}_{i=1}^{M}
ight)$$

Experiments: Non–linear models has low model rank bias

[Zhang et al.] Yaoyu Zhang*, Zhongwang Zhang, Leyang Zhang, *Zhiwei Bai*, Tao Luo, Zhi–Qin John Xu. Optimistic estimate uncovers the potential of nonlinear models. arXiv preprint arXiv: 2307.08921, 2023.

Zhiwei Bai

Implicit Regularization in Matrix Factorization Models

September 26, 2024 34»37

Generalize to Transformer Architecture

• Matrix Factorization Model is a Component of the Transformer Architecture

$$Y = \sum_{i=1}^{h} ext{softmax}_{ ext{row}} \left(rac{XW_{Q_i}W_{K_i}^ op X^ op}{\sqrt{d_k}}
ight) XW_{V_i}W_{O_i}$$

(a) Singular values of W_Q (b) Singular values of W_K (c) Singular values of W_V (d) Singular values of W_O

Zhiwei Bai

Take Home Messages

- Implicit Regularization of Overparameterized models \implies Generalization
- Connected Case: Hierarchical Invariant Manifold Traversal; Model achieves optima within each invariant manifold Minimum Rank Regularization

 Disconnected Case: Sub-optima emerges complete bipartite components Minimum Nuclear Norm Regularization

Zhiwei Bai

Thanks!

