

Connectivity Shapes Implicit Regularization in Matrix Factorization Models for Matrix Completion

Zhiwei Bai

Shanghai Jiao Tong University

School of Mathematical Sciences & Institute of Natural Sciences September 26, 2024

目录 CONTENTS

[Introduction](#page-2-0) and Motivation 1

- **Connectivity [Affects Implicit](#page-12-0) Regularization** 2
- **3 Training [Dynamics Analysis](#page-21-0)f**
- **Implicit [Regularization](#page-29-0) Analysis** 4
- **Discussion and [Conclusion](#page-29-0)** 5

1. Introduction and Motivation

Background: DNNs as Function Approximator

Deep Neural Networks (DNNs) have achieved remarkable success in various fields.

DNNs as Function Approximator

$$
)=
$$
 "Cat"

 $) =$ "5-5" $f($ (next move)

Key Structure: Composition of Functions Layer by Layer $f_a^{[l]}(x) = \sigma(W^{[l]}f_a^{[l-1]}(x) + b^{[l]}), l = 1, 2, \cdots, L-1.$

$$
\boldsymbol{f}_{\boldsymbol{\theta}}^{[l]}(\boldsymbol{X}) = \sum_{i=1}^{h} \operatorname{softmax}_{\operatorname{row}}\left(\frac{\boldsymbol{X}\boldsymbol{W}_{\boldsymbol{Q}_i}\boldsymbol{W}_{\boldsymbol{K}_i}^\top\boldsymbol{X}^\top}{\sqrt{d_k}}\right)\boldsymbol{X}\boldsymbol{W}_{\boldsymbol{V}_i}\boldsymbol{W}_{\boldsymbol{O}_i}
$$

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ⁴ ³ ⁷

Background: How to Understand the Learning Behavior?

- **Theory: Understanding the learning behavior**
- **DNNs: Overparameterization**

Q: Which Global Minimum is learned?

- **Mathematical Formulation**
	- Empirical risk:

$$
R_S(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n \ell(\boldsymbol{f}(\boldsymbol{x}_i; \boldsymbol{\theta}), \boldsymbol{y}_i)
$$

- \circ Model: $\bm{f}(\bm{x}; \bm{\theta})$
- \circ Data: $S = \{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^n$
- \circ Loss function: $\ell(\cdot,\cdot)$
- \circ Learning dynamics: $\dot{\boldsymbol{\theta}} = -\nabla R_S(\boldsymbol{\theta})$ with $\bm{\theta}_0 \sim N(\bm{0}, \sigma^2)$

How to analyze the learning dynamics?

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ⁵ ³ ⁷

Background: the Generalization Mystery

DNNs' capacity is very large

Sufficiently large for memorizing the entire random dataset

Q: Is explicit regularization necessary?

[Zhang et al.] [Understanding](https://arxiv.org/abs/1611.03530) deep learning requires rethinking [generalization.](https://arxiv.org/abs/1611.03530) ICLR 2017 (Best Paper);

DNNs generalize well without explicit regularization

 Explicit regularization may improve generalization performance, but is neither necessary nor sufficient

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ⁶ ³ ⁷

The Generalization Mystery \implies Implicit Regularization

- **Matrix Completion**
	- $\begin{vmatrix} 1 & 2 & 3 \\ \star & 4 & \star \\ \star & \star & 9 \end{vmatrix} \implies \begin{vmatrix} 1 & 2 & 3 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{vmatrix}$
- **Non-Factorization Model (Overparameterization):**

$$
\boldsymbol{f}_{\boldsymbol{\theta}} = \boldsymbol{W} \in \mathbb{R}^{d \times d}, \boldsymbol{\theta} = \text{vec}(\boldsymbol{W}) \in \mathbb{R}^{d^2}
$$

- \bullet Linear w.r.t. $\boldsymbol{\theta}$
- **Convex Optimization**

 $R_S(\theta) = \frac{1}{n} \sum_{k=1}^n ((f_{\theta})_{i_k j_k} - M_{i_k j_k})^2$

• Implicit Regularization $(\dot{\boldsymbol{\theta}} = -\nabla R_S(\boldsymbol{\theta}))$

$$
\min_{\bm{\theta} \in \bm{\Theta}} \|\bm{\theta} - \bm{\theta}_0\|_2 = \|\bm{W} - \bm{W}_0\|_F
$$

Matrix Completion

$$
\begin{bmatrix} 1 & 2 & 3 \\ \star & 4 & \star \\ \star & \star & 9 \end{bmatrix} \implies \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}
$$

Matrix Factorization Model (Composition Structure, Overparameterization)

$$
\boldsymbol{f}_{\boldsymbol{\theta}} = \boldsymbol{A}\boldsymbol{B} \in \mathbb{R}^{d \times d}, \boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{d \times d}
$$

- Non-Linear w.r.t. $\boldsymbol{\theta}$
- **Non-Convex Optimization** $R_S(\boldsymbol{\theta}) = \frac{1}{n} \sum_{k=1}^n ((\boldsymbol{f}_{\boldsymbol{\theta}})_{i_kj_k} - \boldsymbol{M}_{i_kj_k})^2$
- Implicit Regularization $(\dot{\boldsymbol{\theta}} = -\nabla R_S(\boldsymbol{\theta}))$????????????

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ⁷ ³ ⁷

Recent Works on Implicit Regularization in Matrix Factorization

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ⁸ ³ ⁷

Are these characterizations sufficient? Do they describe the whole picture of matrix factorization models?

Examples

\n- Observation Matrices Commute:
$$
E_{ij}E_{mn} = \delta_{jm}E_{in} = E_{mn}E_{ij} = \delta_{ni}E_{mj}
$$
\n- $\begin{bmatrix}\n \times & \star & \star & \star \\
\times & \star & \star & \star \\
\times & \star & \star & \star \\
\times & \times & \times & \times\n \end{bmatrix}$
\n

Counterexample:

$$
\begin{bmatrix} 0 & 1 \\ 2 & \star \end{bmatrix} \stackrel{GD}{\implies} \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ \star & 3 \end{bmatrix} \stackrel{GD}{\implies} \begin{bmatrix} 1 & 2 \\ 1.5 & 3 \end{bmatrix}
$$

GD still learned the minimal nuclear norm solution although the observation matrices do not commute

- **Restricted Isometry Property (RIP):** The measurement operator A satisfies the (δ, r) RIP if $\|\mathbf{Z}\|_{\mathrm{F}}^2 \leq \|\mathcal{A}(\mathbf{Z})\|_{2}^2 \leq (1+\delta)\|\mathbf{Z}\|_{\mathrm{F}}^2$ for all $\boldsymbol{Z} \in \mathbb{R}^{d \times d}$ with $\mathrm{rank}(\boldsymbol{Z}) \leq r$
- **Counterexample:**
	- $\begin{bmatrix} 1 & 2 \\ 3 & \star \end{bmatrix} \stackrel{GD}{\implies} \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 10 & \star \end{bmatrix} \stackrel{GD}{\implies} \begin{bmatrix} 1 & 2 \\ 10 & 20 \end{bmatrix}$
- **GD still learned the minimal rank solution although the observation matrices do** not satisfy the (δ, r) RIP **condition**

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ¹ ⁰ ³ ⁷

How to construct a unified understanding of when, how, and why they achieve different implicit regularization effects?

Empirical Observations

The connectivity of observed data affects the implicit regularization

- **Low rank bias in connected case**
- **Low nuclear norm bias in certain disconnected case**

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ¹ ² ³ ⁷

2. Connectivity Affects Implicit Regularization

Definition of Connectivity

Observation matrix

$$
\boldsymbol{P_{ij}} = \begin{cases} 1, & \boldsymbol{M_{ij}} \text{ is observed and non-zero} \\ 0, & \text{otherwise} \end{cases}
$$

Associated Observation Graph

Definition 1 (Associated Observation Graph). The associated observation graph is the bipartite graph with adjacency matrix $\begin{bmatrix} 0 & P^{\top} \\ P & 0 \end{bmatrix}$, with isolated vertices removed.

Connectivity

Definition 2. Connected: is connected; Disconnected: is disconnected The connected components of \bm{M} are defined as the connected components of G_M .

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ¹ ⁴ ³ ⁷

Examples of Connectivity

Disconnectivity with Complete Bipartite Components

Definition 3. Disconnectivity with Complete Bipartite Components: Graph is disconnected and each connected component forms a complete bipartite subgraph.

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ¹ ⁵ ³ ⁷

Connectivity Affects Implicit Regularization

\n- Disconnected
\n- $$
M_1 = \begin{bmatrix} 1 & 2 & \star \\ 3 & \star & \star \\ \star & \star & 5 \end{bmatrix}
$$
\n

$$
M_1 = \begin{bmatrix} 1 & 2 & \star \\ 3 & \star & \star \\ \star & \star & 5 \end{bmatrix} \qquad \begin{matrix} \text{Disconnected (complete} \\ \text{bipartite components)} \\ M_2 = \begin{bmatrix} 1 & 2 & \star \\ 3 & 4 & \star \\ \star & \star & 5 \end{bmatrix} \end{matrix}
$$

Connected

$$
M_3=\begin{bmatrix}1&2&\star\\3&4&\star\\6&\star&5\end{bmatrix}
$$

┑

 \bullet

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ¹ ⁶ ³ ⁷

Connected Case—Initialization Matters

- **Large initialization: rank-4**
- **Small initialization: rank-3**

Learning lowest-rank solution in infinitesimal initialization

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ¹ ⁷ ³ ⁷

Connected Case—Traversing Progressive Optima

- **Training Loss: stepwise decline**
- **Saddle Points: Experience optimal approximation of each rank**

Traversing progressive optima at each rank

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ¹ ⁸ ³ ⁷

Connected Case—Alignment of $\text{row}(A)$ **and** $\text{col}(B)$

Evolution of Singular Values

(f) Singular values of A (g) Singular values of B (h) Singular values of W_{aug}

E

Rank increases step by step

$$
\textcolor{red}{\bullet}\ \textcolor{red}{\mathrm{rank}}(\bm{A})=\textcolor{red}{\mathrm{rank}}\left(\bm{B}^{\top}\right)=\textcolor{red}{\mathrm{rank}}\left(\bm{W}_{\text{aug}}\right),\textcolor{red}{\text{where}}\ \bm{W}_{\text{aug}}=\left|\frac{\bm{A}}{\bm{B}^{\top}}\right|
$$

 \implies $\text{row}(A) = \text{col}(B)$, which induces an invariant manifold in theoretical analysis

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ¹ ⁹ ³ ⁷

Disconnected Case—Alignment of $\text{row}(A)$ **and** $\text{col}(B)$

Evolution of Singular Values

- Alignment of the row space of A and the column space of B : $row(\bm{A}) = col(\bm{B})$
- **Lowest-rank solution is not learned () in disconnected case!**
- **Lowest nuclear norm solution is learned in this disconnected case**

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ² ⁰ ³ ⁷

Disconnected Case—Learn Sub-optimal Saddle Point

Dynamics: decouple into two independent systems in the disconnected case

$$
\left\{\begin{aligned} \dot{\boldsymbol{a}}_i = -\frac{2}{n}\sum_{j\in I_i}\left(\boldsymbol{a}_i\cdot\boldsymbol{b}_{\cdot,j}-\boldsymbol{M}_{ij}\right)\!\boldsymbol{b}_{\cdot,j}^\top, i\in\{1,3\} \qquad& \left\{\dot{\boldsymbol{a}}_2 = -\frac{2}{n}(\boldsymbol{a}_2\cdot\boldsymbol{b}_{\cdot,2}-\boldsymbol{M}_{22})\boldsymbol{b}_{\cdot,2}^\top \right.\\ \left.\left.\dot{\boldsymbol{b}}_{\cdot,j} = -\frac{2}{n}\sum_{i\in I_j}\left(\boldsymbol{a}_i\cdot\boldsymbol{b}_{\cdot,j}-\boldsymbol{M}_{ij}\right)\!\boldsymbol{a}_i^\top, j\in\{1,3\} \qquad \right.\left.\left\{\dot{\boldsymbol{b}}_{\cdot,2} = -\frac{2}{n}(\boldsymbol{a}_2\cdot\boldsymbol{b}_{\cdot,2}-\boldsymbol{M}_{ij})\boldsymbol{a}_2^\top \right.\right. \end{aligned}\right.
$$

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ² ¹ ³ ⁷

3. Training Dynamics Analysis

Hierarchical Intrinsic Invariant Manifold

Hierarchical Intrinsic Invariant Manifold (HIIM)

Proposition 1 (Hierarchical Intrinsic Invariant Manifold (HIIM)). Let $f_{\theta} = AB$ be a **matrix** factorization model and $\{\boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_k\}$ be k linearly independent vectors. Define the manifold $\mathbf{\Omega}_k$ as

 $\Omega_k := \Omega_k(\alpha_1, \cdots, \alpha_k) = \{ \theta = (A, B) \mid \text{row}(A) = \text{col}(B) = \text{span} \{ \alpha_1, \cdots, \alpha_k \} \}$ The manifold $\mathbf{\Omega}_k$ possesses the following properties:

(1) Invariance under Gradient Flow: Given data and the gradient flow dynamics $\dot{\boldsymbol{\theta}} = -\nabla R_S(\boldsymbol{\theta}),$ if the initial point $\boldsymbol{\theta}_0 \in \boldsymbol{\Omega}_k,$ then $\boldsymbol{\theta}(t) \in \boldsymbol{\Omega}_k$ for all $t \geq 0.$

(2) Intrinsic Property: is a data-independent invariant manifold, meaning that for any data S , $\mathbf{\Omega}_k$ remains invariant under the gradient flow dynamics.

(3) Hierarchical Structure: The manifolds Ω_k form a hierarchy: $\mathbf{\Omega}_0 \subsetneq \mathbf{\Omega}_1 \subsetneq \cdots \subsetneq \mathbf{\Omega}_{k-1} \subsetneq \mathbf{\Omega}_k.$

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ² ³ ³ ⁷

Disconnected Case: Intrinsic Sub- Ω_k **Invariant Manifold**

Intrinsic Sub- Invariant Manifold

Proposition 2 (Intrinsic Sub- Ω_k **Invariant Manifold). Let** $f_\theta = AB$ **be a matrix factorization** model, \boldsymbol{M} be an incomplete matrix and $\boldsymbol{\Omega}_k$ be an invariant manifold **defined in Prop. 1. If is disconnected with connected components, then there exist** m sub- Ω_k manifolds ω_k such that $\omega_k \subsetneq \Omega_k$, each possessing the following **properties:**

(1) Invariance under Gradient Flow: Given data and the gradient flow dynamics $\dot{\boldsymbol{\theta}} = -\nabla R_S(\boldsymbol{\theta}),$ if the initial point $\boldsymbol{\theta}_0 \in \boldsymbol{\omega}_k$, then $\boldsymbol{\theta}(t) \in \boldsymbol{\omega}_k$ for all $t \geq 0.$

(2) Intrinsic Property: is a data-value-independent invariant manifold, meaning that for a fixed sampling pattern in \boldsymbol{M} and any observed values $S, \boldsymbol{\omega}_k$ remains invariant **under the gradient flow.**

(3) Strict Subset Relation: The output set $\{f_{\theta} | \theta \in \omega_k\}$ is a proper subset of $\{ \bm{f}_{\bm{\theta}} \mid \bm{\theta} \in \bm{\Omega}_k \},$ namely, $\{ \bm{f}_{\bm{\theta}} \mid \bm{\theta} \in \bm{\omega}_k \} \subseteq \{ \bm{f}_{\bm{\theta}} \mid \bm{\theta} \in \bm{\Omega}_k \}$

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ² ⁴ ³ ⁷

Intuitive Illustration

Illustration of Training Trajectories

Blue line represents the trajectory converging to the lowest-rank solution. Red line represents the actual trajectory experienced by the model

- **Connected case: Model traverses with invariant manifold**
- **Disconnected case:**
	- \circ Sub- $\mathbf{\Omega}_k$ invariant manifold **emerges**
	- \circ Each sub- $\mathbf{\Omega}_k$ induces a sub**optimal saddle point**
	- **Sub-optima prevent the model from learning the lowest-rank solution**

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ² ⁵ ³ ⁷

Loss Landscape does not Contain any Local Minima

Loss Landscape

Theorem 1 (Loss Landscape). Given any data S , the critical points of $R_S(\theta)$ are **either strict saddle points or global minima.**

Gradient descent easily escapes saddle points

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ² ⁶ ³ ⁷

Assumptions for Encountered Critical Points

Assumption 1 Top Eigenvalue

Assumption 1 (Top Eigenvalue). Let $\delta M = (A_c B_c - M)_{S_c}$ be the residual **matrix** at the critical point $\boldsymbol{\theta}_c = (\boldsymbol{A}_c, \boldsymbol{B}_c)$. Assume that the top singular value of the matrix δM is unique.

Assumption 2 Second-order Stationary Point

Assumption 2 (Second–order Stationary Point). Let Ω **be an** Ω_k **invariant manifold** or sub- Ω_k invariant manifold defined in Prop. 1 or 2. Assume θ_c is a **second-order stationary** point within Ω , i.e., $\nabla R_S(\theta_c) = 0$ and $\boldsymbol{\theta}^\top \nabla^2 R_S\left(\boldsymbol{\theta}_{c}\right) \boldsymbol{\theta} \geq 0$ for all $\boldsymbol{\theta} \in \boldsymbol{\Omega}.$

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ² ⁷ ³ ⁷

Characterization of Training Dynamics

P Transition to the Next Rank-level Invariant Manifold

Theorem 2 (Transition to the Next Rank-level Invariant Manifold). Consider the dynamics $\dot{\boldsymbol{\theta}} = -\nabla R_S(\boldsymbol{\theta})$. Let $\varphi(\boldsymbol{\theta}_0, t)$ denote the value of $\boldsymbol{\theta}(t)$ when $\boldsymbol{\theta}(0) = \boldsymbol{\theta}_0$. Let $\boldsymbol{\Omega}$ be an $\boldsymbol{\Omega}_k$ or sub- $\boldsymbol{\Omega}_k$ invariant manifold. Let $\boldsymbol{\theta}_c \in \boldsymbol{\Omega}$ **be a critical point satisfying Assump. 1 and 2. Then, for randomly** selected θ_0 , with probability 1 with respect to θ_0 , the limit

$$
\tilde{\varphi}\left(\boldsymbol{\theta}_{c},t\right):=\lim\nolimits_{\alpha\rightarrow0}\varphi\left(\boldsymbol{\theta}_{c}+\alpha\boldsymbol{\theta}_{0},t+\tfrac{1}{\lambda_{1}}\!\log\tfrac{1}{\alpha}\right)
$$

exists and falls into an invariant manifold $\mathbf{\Omega}_{k+1}$ **. Here** λ_1 **is the top** eigenvalue of $-\nabla^2 R_S(\boldsymbol{\theta}_c)$.

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ² ⁸ ³ ⁷

Proof Sketch

- Linear Approximation near critical point $\boldsymbol{\theta}_c$: $\frac{d\theta}{dt} \approx H(\boldsymbol{\theta}_0 - \boldsymbol{\theta}_c).$
- Solution $\boldsymbol{\theta}(t) = e^{tH}(\boldsymbol{\theta}_0 \boldsymbol{\theta}_c) + \boldsymbol{\theta}_c$, specifically $\boldsymbol{\theta}(t) = \sum_{i=1}^s \sum_{j=1}^{l_i} e^{\lambda_i t} \langle \boldsymbol{\theta}_0 - \boldsymbol{\theta}_c, q_{ij} \rangle q_{ij} + \boldsymbol{\theta}_c \, ,$
- **Dominant eigenvalue trajectory**:

$$
\boldsymbol{\theta}(t_0) = \sum_{j=1}^{l_1} e^{\lambda_1 t_0} \langle \boldsymbol{\theta}_0 - \boldsymbol{\theta}_c, q_{1j} \rangle q_{1j} + O(e^{\lambda_2 t_0})
$$

- **The first principal component** $\sum_{j=1}^{l_1}e^{\lambda_1t_0}\langle \bm{\theta}_0-\bm{\theta}_c,q_{1j}\rangle q_{1j}$ corresponds to an Ω_1 invariant manifold under Assump. 1 and 2
- Escaping $\boldsymbol{\theta}_c$ increases rank by 1, entering Ω_{k+1}

Escape from the top eigendirection

 $\operatorname{col}(\boldsymbol{B})$

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ² ⁹ ³ ⁷

4. Implicit Regularization Analysis

Minimum Rank Regularization

Minimum Rank Regularization

Theorem 3 (Minimum Rank). Consider the dynamics $\dot{\theta} = -\nabla R_S(\theta)$, where $\boldsymbol{\theta}(t) = (\boldsymbol{A}(t), \boldsymbol{B}(t)),$ and denote $\boldsymbol{W}_t = \boldsymbol{A}(t) \boldsymbol{B}(t)$. Assume \boldsymbol{W}_t achieves an **optimal within each invariant manifold** $\mathbf{\Omega}_k$ **. For a full rank initialization** \mathbf{W}_0 **, if** the limit $\widehat{\boldsymbol{W}} = \lim_{\alpha\to 0} \boldsymbol{W}_{\infty} (\alpha \boldsymbol{W}_0)$ exists and is a global optimum with $\hat{\bm{W}}_{ij}=\bm{M}_{ij}$ for all $(i,j)\in S_{\bm{x}},$ then

 $\widehat{\bm{W}} \in \mathop{\rm argmin}_{\bm{W}} \mathop{\rm rank}(\bm{W}) \quad \text{ s.t. } \quad \bm{W}_{ij} = \bm{M}_{ij}, \forall (i,j) \in S_{\bm{x}}$

In connected case, experiments provide strong evidence that model achieves an optimal within each invariant manifold

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ³ ¹ ³ ⁷

Minimum Nuclear Norm Regularization

In disconnected case, the minimum nuclear norm may still serve as a characterization

Minimum Nuclear Norm Regularization

Theorem 4 (Minimum Nuclear Norm Guarantee). Consider the dynamics $\dot{\theta} = -\nabla R_S(\theta)$, where $\theta(t) = (A(t), B(t))$, and let $W_t = A(t)B(t)$. If the observation **graph associated with the incomplete matrix is disconnected with complete bipartite components**, and if for a full rank initialization W_0 , the limit $\widehat{\bm{W}}=\lim_{\alpha\to 0}\bm{W}_{\infty}\left(\alpha\bm{W}_0\right)$ exists and is a global optimum with $\widehat{\bm{W}}_{ij}=\bm{M}_{ij}$ for all $(i, j) \in S_x$, then

 $\widehat{\bm{W}}\in\mathop{\rm argmin}_{\bm{W}}\|\bm{W}\|_{*}\quad \text{ s.t. }\quad \bm{W}_{ij}=\bm{M}_{ij}, \forall (i,j)\in S_{\bm{x}}$

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ³ ² ³ ⁷

5. Discussion and Conclusion

Generalize to Neural Networks: From Linear to Nonlinear

- **Matrix Factorization:** $f_{\theta} = AB$
- Linear w.r.t input \boldsymbol{x}
- **Implicit Bias: Low rank**

Neural Networks:

$$
f_{\bm{\theta}}(\bm{x}) = \sum_{i=1}^m a_i \sigma(\bm{w}_i^\top \bm{x})
$$

- Non-Linear w.r.t input \boldsymbol{x}
- Implicit Bias: ???????

Model Rank for Non-linear Models:

$$
\operatorname{rank}_{f_{\boldsymbol{\theta}}} \left(\boldsymbol{\theta}^* \right) := \dim \left(\operatorname{span}\left\{ \partial_{\theta_i} f \left(\cdot ; \boldsymbol{\theta}^* \right) \right\}_{i=1}^M \right)
$$

 Experiments: Non-linear models has low model rank bias \bullet

[Zhang et al.] Yaoyu Zhang*, Zhongwang Zhang, Leyang Zhang, *Zhiwei Bai*, Tao Luo, Zhi–Qin John Xu. Optimistic estimate **uncovers the potential of nonlinear models. arXiv preprint arXiv: 2307.08921, 2023.**

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ³ ⁴ ³ ⁷

Generalize to Transformer Architecture

Matrix Factorization Model is a Component of the Transformer Architecture

$$
Y = \sum_{i=1}^h \operatorname{softmax}_{\operatorname{row}} \left(\frac{X W_{Q_i} W_{K_i}^\top X^\top}{\sqrt{d_k}} \right) X W_{V_i} W_{O_i}
$$

(a) Singular values of $W_Q(b)$ Singular values of $W_K(c)$ Singular values of $W_V(d)$ Singular values of W_O

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ³ ⁵ ³ ⁷

Take Home Messages

- **Implicit Regularization of Overparameterized models** \implies **Generalization**
- **Connected Case: Hierarchical Invariant Manifold Traversal**; Model achieves optima within each invariant manifold **Minimum Rank Regularization**

• Disconnected Case: Sub-optima emerges \implies preventing low rank; Disconnected with **complete bipartite components** \implies **Minimum Nuclear Norm Regularization**

Zhiwei Bai Implicit Regularization in Matrix Factorization Models September 26, 2024 ³ ⁶ ³ ⁷

Thanks!

