Online Learning with Sublinear Best-Action Queries

NeurIPS 2024, Vancouver (Canada)

Matteo Russo Sapienza University Rome Andrea Celli Bocconi University

Daniel Haimovich Meta Dima Karamshuk Meta Riccardo Colini-Baldeschi Meta

Federico Fusco Sapienza University Rome

Stefano Leonardi Sapienza University Rome Niek Tax Meta

How to continuously moderate posted content

How to continuously moderate posted content

- Either by an automatic decision that can make mistakes

How to continuously moderate posted content

- Either by an automatic decision that can make mistakes

How to continuously moderate posted content

- Posts come one after the other and platform has to flag content as harmful or not • Either by an automatic decision that can make mistakes
- Or by asking for an (expert) human review which we assume to be perfect

How to continuously moderate posted content

- Either by an automatic decision that can make mistakes
- Or by asking for an (expert) human review which we assume to be perfect

How to continuously moderate posted content

Learning Protocol Online Learning with Best-Action Queries

Learning Protocol **Online Learning with Best-Action Queries**

• Setting: *n* possible actions and *k* best-action queries available

Learning Protocol

Online Learning with Best-Action Queries

- Setting: *n* possible actions and *k* best-action queries available
- For time t = 1, ..., T:
 - A (hidden) loss $\ell_t(i)$ arrives for each action $i \in [n]$ 1.
 - The learner 2.
 - A. Either takes action i_t at time t
 - 3. The learner incurs a (hidden) loss $\ell_t(i_t)$ or $\ell_t(i_t^*)$
 - 4. A feedback z_t is revealed

B. Or is told the identity of the best action i_t^* at time t, and takes it

Learning Protocol

Online Learning with Best-Action Queries

- Setting: *n* possible actions and *k* best-action queries available
- For time t = 1, ..., T:
 - A (hidden) loss $\mathscr{C}_{t}(i)$ arrives for each action $i \in [n]$ 1.
 - The learner 2.
 - A. Either takes action i_t at time t
 - B. Or is told the identity of the best action i_{t}^{*} at time t, and takes it
 - 3. The learner incurs a (hidden) loss $\ell_t(i_t)$ or $\ell_t(i_t^*)$
 - 4. A feedback z_t is revealed

Learning Protocol

Online Learning with Best-Action Queries

- Setting: *n* possible actions and *k* best-action queries available
- For time t = 1, ..., T:
 - A (hidden) loss $\ell_t(i)$ arrives for each action $i \in [n]$ 1.
 - The learner 2.
 - A. Either takes action i_t at time t
 - B. Or is told the identity of the best action i_{t}^{*} at time t, and takes it
 - 3. The learner incurs a (hidden) loss $\ell_t(i_t)$ or $\ell_t(i_t^*)$
 - 4. A feedback z_t is revealed

 $\leq k$ times

The Model Adversary, Queries & Feedback, Regret

• We assume losses to be generated by an **oblivious adversary**

Adversary, Queries & Feedback, Regret

- We assume losses to be generated by an **oblivious adversary**
- At time step t, before feedback is received, a **best-action query** reveals the *identity* of the best action at that time step, i.e., $i_t^* := \arg\min_{t} \ell_t(i)$ $i \in [n]$

Adversary, Queries & Feedback, Regret

- We assume losses to be generated by an **oblivious adversary**
- At time step t, before feedback is received, a **best-action query** reveals the *identity* of the best action at that time step, i.e., $i_t^* := \arg\min_{t} \ell_t(i)$ $i \in [n]$

Adversary, Queries & Feedback, Regret

k times

- We assume losses to be generated by an **oblivious adversary**
- At time step t, before feedback is received, a **best-action query** reveals the *identity* of the best action at that time step, i.e., $i_t^* := \arg\min \ell_t(i)$ $i \in [n]$
- We study two types of feedback regimes
 - **Full feedback:** All losses revealed at all time steps, i.e., $z_t = (\ell_t(i))_{i \in [n]}$ 1.
 - 2. Label-efficient feedback: All losses revealed *only after* a querying time step

Adversary, Queries & Feedback, Regret

k times

- We assume losses to be generated by an **oblivious adversary**
- At time step t, before feedback is received, a **best-action query** reveals the *identity* of the best action at that time step, i.e., $i_t^* := \arg\min_{t} \ell_t(i)$ $i \in [n]$
- We study two types of feedback regimes
 - **Full feedback:** All losses revealed at all time steps, i.e., $z_t = (\ell_t(i))_{i \in [n]}$ 1.
 - 2. Label-efficient feedback: All losses revealed *only after* a querying time step
- We want to understand how the **regret** grows:

$$R_T := \sum_{t \in [T]} \mathbb{E}[\mathscr{C}_t(i_t)] - \min_{i \in [n]} \sum_{t \in [T]} \mathscr{C}_t(i)$$

Adversary, Queries & Feedback, Regret

 $\leq k$ times

Our Results Upper and Lower Bounds

Regret	Classical No Query	Low Query
Full feedback	$k = 0$ $R_T \in \Theta\left(\sqrt{T}\right)$	$k \in O\left(\sqrt{T}\right)$ $R_T \in \Theta\left(\sqrt{T}\right)$
Label-efficient feedback		

Sublinear Query

$$k \in \Omega\left(\sqrt{T}\right)$$
$$R_T \in \Theta\left(\frac{T}{k}\right)$$

Our Results Upper and Lower Bounds

Regret	Classical No Query	Low Query
Full feedback	$k = 0$ $R_T \in \Theta\left(\sqrt{T}\right)$	$k \in O\left(\sqrt{T}\right)$ $R_T \in \Theta\left(\sqrt{T}\right)$
Label-efficient feedback	$k = 0$ $R_T \in \Theta\left(\frac{T}{\sqrt{k}}\right)$	$k \in O\left(T^{2/3}\right)$ $R_T \in \Theta\left(\frac{T}{\sqrt{k}}\right)$

Sublinear Query

$$k \in \Omega\left(\sqrt{T}\right)$$
$$R_T \in \Theta\left(\frac{T}{k}\right)$$
$$k \in \Omega\left(T^{2/3}\right)$$
$$R_T \in \Theta\left(\frac{T^2}{k^2}\right)$$

Regret	Classical No Query	Low Query	Sublinea
Full feedback	$k = 0$ $R_T \in \Theta\left(\sqrt{T}\right)$	$k \in O\left(\sqrt{T}\right)$ $R_T \in \Theta\left(\sqrt{T}\right)$	$k \in \Omega \left(R_T \in \Theta \right)$
Label-efficient feedback	$k = 0$ $R_T \in \Theta\left(\frac{T}{\sqrt{k}}\right)$	$k \in O\left(T^{2/3}\right)$ $R_T \in \Theta\left(\frac{T}{\sqrt{k}}\right)$	$k \in \Omega$ $R_T \in \Theta$

Our Results

Upper and Lower Bounds

Sublinear Query

 $k \in \Omega\left(\sqrt{T}\right)$ $R_T \in \Theta\left(\frac{T}{k}\right)$ $k \in \Omega\left(T^{2/3}\right)$

 T^2

 k^2

Upper Bound

- Full feedback: *Hedge* on *true* losses equipped with k uniform random queries across the time horizon (+ refined analysis)
- Label-efficient feedback: Hedge on estimated losses equipped with uniform probability querying until query budget exhaustion (+ refined analysis)

Regret	Classical No Query	Low Query
Full feedback	$k = 0$ $R_T \in \Theta\left(\sqrt{T}\right)$	$k \in O\left(\sqrt{T}\right)$ $R_T \in \Theta\left(\sqrt{T}\right)$
Label-efficient feedback	$k = 0$ $R_T \in \Theta\left(\frac{T}{\sqrt{k}}\right)$	$k \in O\left(T^{2/3}\right)$ $R_T \in \Theta\left(\frac{T}{\sqrt{k}}\right)$

Our Results

Upper and Lower Bounds

Sublinear Query

$$k \in \Omega\left(\sqrt{T}\right)$$
$$R_T \in \Theta\left(\frac{T}{k}\right)$$

 $k \in \Omega\left(T^{2/3}\right)$

*k*²

 $R_T \in \Theta$

Upper Bound

- Full feedback: *Hedge* on *true* losses equipped with k uniform random queries across the time horizon (+ refined analysis)
- Label-efficient feedback: Hedge on estimated losses equipped with uniform probability querying until query budget exhaustion (+ refined analysis)

Lower Bound

• Full and label-efficient feedback: Two actions where queries cannot help more than T/k and T^2/k^2

Regret	Classical No Query	Low Query
Full feedback	$k = 0$ $R_T \in \Theta\left(\sqrt{T}\right)$	$k \in O\left(\sqrt{T}\right)$ $R_T \in \Theta\left(\sqrt{T}\right)$
Label-efficient feedback	$k = 0$ $R_T \in \Theta\left(\frac{T}{\sqrt{k}}\right)$	$k \in O\left(T^{2/3}\right)$ $R_T \in \Theta\left(\frac{T}{\sqrt{k}}\right)$

Our Results

Upper and Lower Bounds

Sublinear Query

$$k \in \Omega\left(\sqrt{T}\right)$$
$$R_T \in \Theta\left(\frac{T}{k}\right)$$

 $k \in \Omega\left(T^{2/3}\right)$ $R_T \in \Theta$ *k*²

Upper Bound

- Full feedback: *Hedge* on *true* losses equipped with k uniform random queries across the time horizon (+ refined analysis)
- Label-efficient feedback: *Hedge* on *estimated* losses equipped with uniform probability querying until query budget exhaustion (+ refined analysis)

Lower Bound

• Full and label-efficient feedback: Two actions where queries cannot help more than T/k and T^2/k^2

Future

- What about **bandit feedback**, feedback graphs, partial monitoring feedback?
- What if queries are **not perfect**?

Thank you!