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• For time : 

1. A (hidden) loss  arrives for each action   

2. The learner  

A. Either takes action  at time  

B. Or is told the identity of the best action  at time , and takes it 
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1. Full feedback: All losses revealed at all time steps, i.e.,   

2. Label-efficient feedback: All losses revealed only aer a querying time step

zt = (ℓt(i))i∈[n]

• At time step , before feedback is received, a best-action query reveals the identity 
of the best action at that time step, i.e., 

t
i*t := arg min

i∈[n]
ℓt(i)

• We want to understand how the regret grows: 

RT := ∑
t∈[T]

𝔼[ℓt(it)] − min
i∈[n] ∑

t∈[T]

ℓt(i)

 times≤ k
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Future 
• What about bandit feedback, feedback graphs, 

partial monitoring feedback? 
• What if queries are not perfect?



Thank you!


