

Model Reconstruction Using Counterfactual Explanations: A Perspective From Polytope Theory

Pasan Dissanayake, Sanghamitra Dutta University of Maryland College Park Poster: Wed 11 Dec 4:30 p.m. PST — 7:30 p.m. PST

What are Counterfactual Explanations?

Training a surrogate model using all the queried datapoints (y=0/1) and one-sided counterfactuals (for datapoints with y=0)

Counterfactuals as ordinary labelled instances? **Decision boundary shift issue**

Question: Can we improve model reconstruction specifically leveraging the fact that the counterfactuals are quite close to the boundary?

Main Contribution:

Novel Model Reconstruction Strategies Using Counterfactuals With Theoretical Guarantees From Polytope Theory

Related Works: *[Aivodji et al.'20][Wang et al.'22] Other Privacy + CF: [Pawelczyk et al.'23][Goethals at al.'23]][Yadav et al.'23] Model extraction in other settings: [Gong et al.'20] [Milli et al.'19]*

Main Results

1. Convex Decision Boundaries and Closest Counterfactuals

Theorem 3.2. Let m be the target binary classifier whose decision boundary is convex (i.e., the set $\{x \in [0,1]^d : |m(x)| = 1\}$ is convex) and has a continuous second derivative. Denote by \tilde{M}_n , the convex polytope approximation of m constructed with n supporting hyperplanes obtained through i.i.d. counterfactual queries. Assume that the fidelity is evaluated with respect to \mathbb{D}_{ref} which is uniformly distributed over $[0,1]^d$. Then, when $n \to \infty$ the expected fidelity of \tilde{M}_n with respect to m is given by

$$
\mathbb{E}\left[\mathrm{Fid}_{m,\mathbb{D}_{ref}}(\tilde{M}_n)\right] = 1 - \epsilon \tag{1}
$$

where $\epsilon \sim \mathcal{O}\left(n^{-\frac{2}{d-1}}\right)$ and the expectation is over both \tilde{M}_n and \mathbb{D}_{ref} .

Theoretical guarantees on **exact volume approximation using counterfactuals** leveraging polytope theory

Main Results

2. ReLU Networks and Closest Counterfactuals

Continuous Piece-Wise Linear (CPWL) Functions

Theorem 3.6. Let m be a target binary classifier with ReLU activations. Let $k(\epsilon)$ be the number of cells through which the decision boundary passes. Define $\{\mathbb{H}_i\}_{i=1,\ldots,k(\epsilon)}$ to be the set of affine pieces of the decision boundary within each decision boundary cell. Let $v_i(\epsilon) = V(\mathbb{G}_{m,g_m}(\mathbb{H}_i))$ where $V(.)$ is the d-dimensional volume (i.e., the Lebesgue measure) and \mathbb{G}_{m,g_m} .) is the inverse counterfactual region w.r.t. m and the closest counterfactual generator g_m . Then the probability of successful reconstruction with counterfactual queries distributed uniformly over $[0,1]^d$ is lower-bounded as

$$
\mathbb{P}\left[Reconstruction\right] \geq 1 - k(\epsilon)(1 - v^*(\epsilon))^n \tag{2}
$$

where $v^*(\epsilon) = \min_{i=1,...,k(\epsilon)} v_i(\epsilon)$ and n is the number of queries.

Main Results

3. Beyond Closest Counterfactuals

Theorem 3.10. Let the target m and surrogate \tilde{m} be ReLU classifiers such that $m(\boldsymbol{w}) = \tilde{m}(\boldsymbol{w})$ for every counterfactual w. For any point x that lies in a decision boundary cell, $|\tilde{m}(x) - m(x)| \le$ $\sqrt{d}(\gamma_m + \gamma_{\tilde{m}})\epsilon$ holds with probability $p \geq 1 - k(\epsilon)(1 - v^*(\epsilon))^n$.

Our Proposed Strategy: Counterfactual Clamping Attack (CCA)

CCA Strategy: Unique Loss Function to Clamp Counterfactuals From One Side and Mitigate the Decision Boundary Shift Issue

Experimental Validation: Fidelity Comparison Over Several Benchmark Datasets

CCA provides high-fidelity model reconstruction

Comparison With Two-Sided Counterfactuals

Baselines: *[Aivodji et al.'20][Wang et al.'22]*

Additional Experiments

Other Counterfactual Generation Techniques

Table 2: Fidelity achieved with different counterfactual generating methods on HELOC dataset. Target model has hidden layers with neurons (20, 30, 10). Surrogate model architecture is (10, 20).

Different Lipschitz Constants

Different Model Architectures

CCA mostly outperforms baselines and gives high-fidelity model reconstruction!

Potential defenses: (i) Noisy Counterfactuals, or (ii) Robust Counterfactuals

Thank You!

 ht </u>

Poster: Wed 11 Dec 4:30 p.m. PST — 7:30 p.m. PST

Broader Implications on the Interplay Between Exalge A