



Optimal Transport-based Labor-free Text Prompt Modeling for Sketch Re-identification

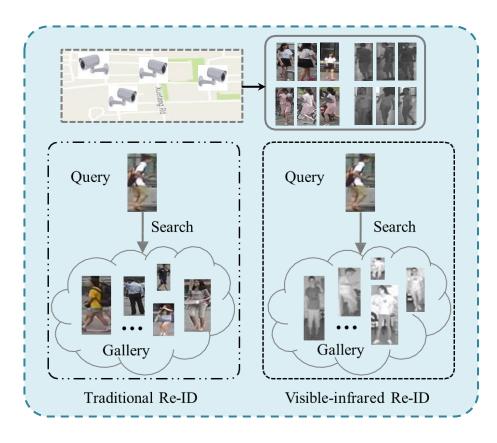
Rui Li, Tingting Ren, Jie Wen, Jinxing Li

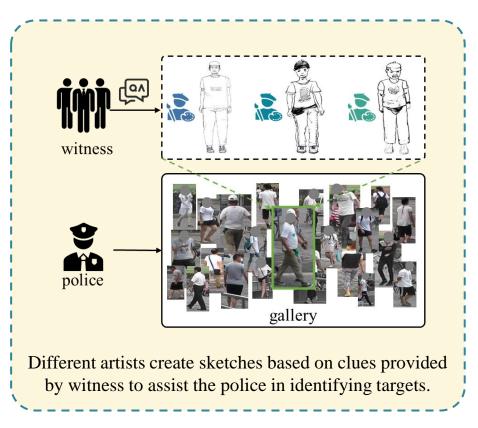
CONTENT

Method

Introduction

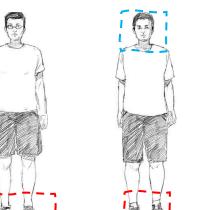
Traditional person re-identification vs. sketch person re-identification (Re-ID)





Introduction

sandal



hat glass

Limitations of traditional models

• Hard alignment manner: loss constraints.

♦ Fully capture the complex dependencies and correlations

- Intermediate modality: simulated sketches; benchmarks containing textual information.
 - ♦ Limited generation performance
 - ♦ Significant human labor

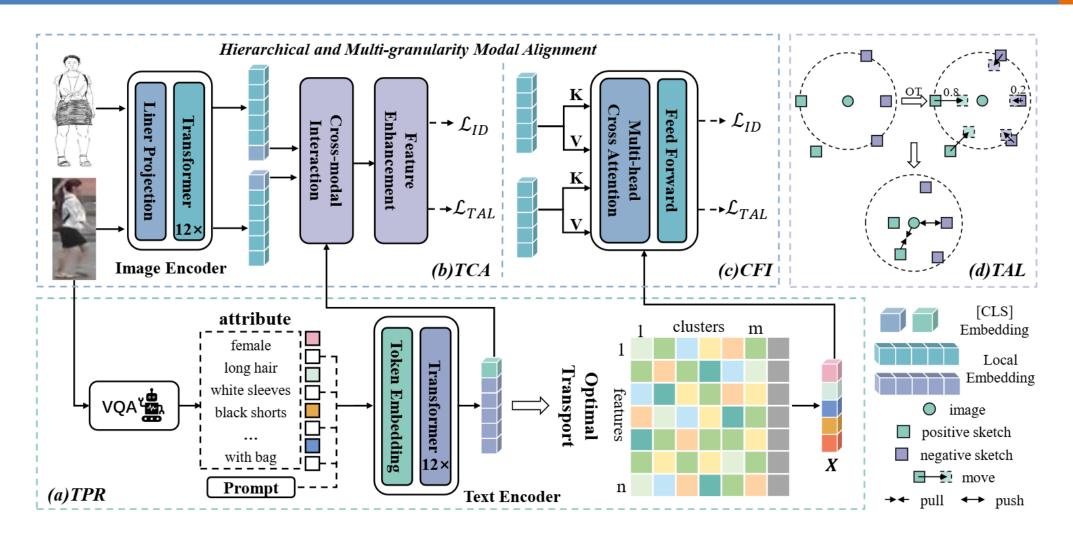
Key challenges

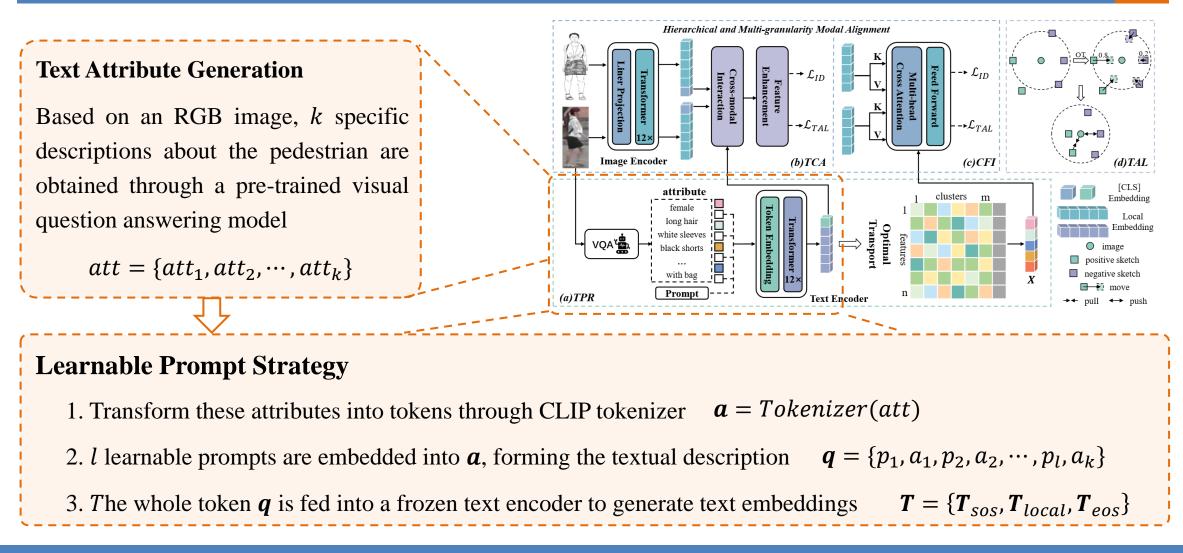
- Developing sufficient textual information as a transition mechanism without incurring additional costs
- Further exploring fine-grained discriminative information for multigranularity interaction

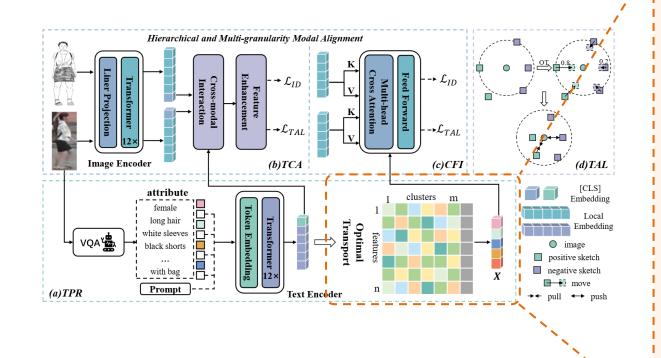
Optimal Transport (OT) is a mathematical theory that focuses on finding an efficient solution between two probability distributions, minimizing the cost of transporting one distribution into another.

$$d_{oldsymbol{C}}(oldsymbol{lpha},oldsymbol{eta}) = \min_{oldsymbol{P}\inoldsymbol{U}(oldsymbol{lpha},oldsymbol{eta})} \langle oldsymbol{C},oldsymbol{P}
angle,\ oldsymbol{U}(oldsymbol{lpha},oldsymbol{eta}) = \left\{oldsymbol{P}\in\mathbb{R}^{m imes n}_+\midoldsymbol{P}oldsymbol{1}_n=oldsymbol{lpha},oldsymbol{P}^ opoldsymbol{1}_m=oldsymbol{eta}
ight\}$$

where $U(\alpha, \beta)$ denotes the transport polytope of α and β , i.e., the solution space of P. The above problem is to find optimal solution P^* in a set of all possible joint probabilities of (X, Y), where X and Y represent random variables with marginal distribution α and β .







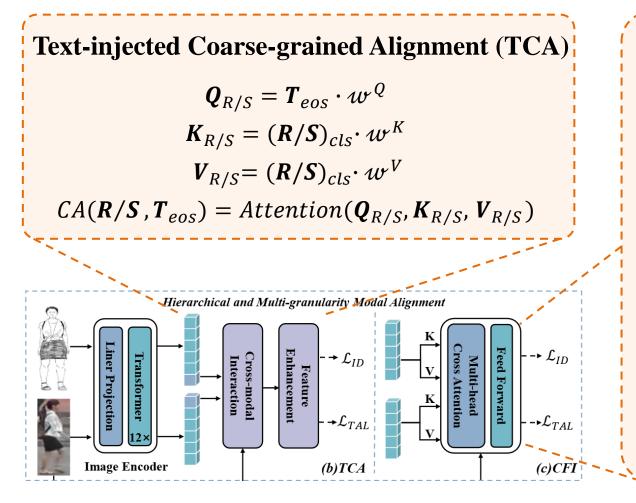
Dynamic Consensus Acquisition

a prototypical descriptor X is formed by assigning local textual features T_{local} to a set of atoms

- Calculate cost matrix C based on T_{local} through two fully connected layers initialized randomly
- Set a "bin" to capture non-informative features
- Optimal transport problem

 $d_{\bar{\boldsymbol{C}}}(\boldsymbol{\alpha},\boldsymbol{\beta}) = \min_{\boldsymbol{P} \in \boldsymbol{U}(\boldsymbol{\alpha},\boldsymbol{\beta})} \langle \bar{\boldsymbol{C}}, \boldsymbol{P} \rangle,$ $\boldsymbol{U}(\boldsymbol{\alpha},\boldsymbol{\beta}) = \{ \boldsymbol{P} \in \mathbb{R}^{n \times (m+1)}_{+} | \boldsymbol{P} \boldsymbol{1}_{m+1} = \boldsymbol{\alpha}, \boldsymbol{P}^{\top} \boldsymbol{1}_{n} = \boldsymbol{\beta} \}$

Consensus **X** can be obtained: $\mathbf{X} = P^{\top} \mathbf{T}_{local}$



Consensus-guided Fine-grained Interaction (CFI)

$$\widehat{\boldsymbol{Q}}_{R/S} = \boldsymbol{X} \cdot \boldsymbol{w}^{\widehat{\boldsymbol{Q}}}, \widehat{\boldsymbol{K}}_{R/S} = (\boldsymbol{R}/\boldsymbol{S})_{local} \cdot \boldsymbol{w}^{\widehat{\boldsymbol{K}}}$$

$$\widehat{\boldsymbol{V}}_{R/S} = (\boldsymbol{R}/\boldsymbol{S})_{local} \cdot \boldsymbol{w}^{\widehat{\boldsymbol{V}}}$$

$$Head_{h}^{R/S} = Attention(\widehat{\boldsymbol{Q}}_{R/S}, \widehat{\boldsymbol{K}}_{R/S}, \widehat{\boldsymbol{V}}_{R/S})$$

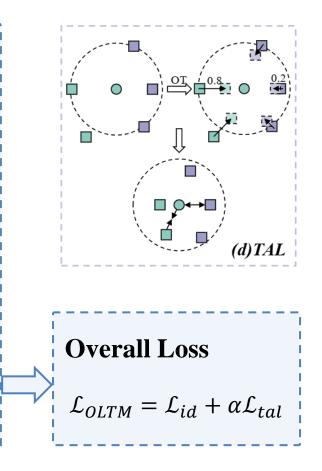
$$MH(\boldsymbol{R}/\boldsymbol{S}, \boldsymbol{X}) = Concat(Head_{1}^{R/S}, \cdots, Head_{H}^{R/S})$$

where R/S signifies identical operations across both modalities; $w^{Q/K/V}$ and $w^{\hat{Q}/\hat{K}/\hat{V}}$ denote shared learnable parameters, while $Q/\hat{Q}_{R/S}$, $K/\hat{K}_{R/S}$ and $V/\hat{V}_{R/S}$ represent query, key and value for either the RGB or sketch modality, respectively.

Triplet Assignment Loss

we establish a more rational measure for evaluating the proximity of feature representations.

$$\mathcal{L}_{tal}(\boldsymbol{R}_{i},\boldsymbol{S}_{i}) = [m - D(\boldsymbol{R}_{i},\boldsymbol{S}_{i}) + D(\boldsymbol{R}_{i},\boldsymbol{S}_{h})]_{+} \\ + [m - D(\boldsymbol{R}_{i},\boldsymbol{S}_{i}) + D(\boldsymbol{R}_{h},\boldsymbol{S}_{i})]_{+} \\ D(\boldsymbol{R}_{i},\boldsymbol{S}_{i}) = \gamma E(\boldsymbol{R}_{i},\boldsymbol{S}_{i}) + (1 - \gamma)(1 - \boldsymbol{P}_{i,i}^{*})E(\boldsymbol{R}_{i},\boldsymbol{S}_{i}) \\ \text{where } [x]_{+} = \max(x,0), \, \boldsymbol{\widehat{R}}_{h} = \arg \max_{R_{j} \neq R_{i}} D(\boldsymbol{R}_{j},\boldsymbol{S}_{i}) \text{ and } \boldsymbol{\widehat{S}}_{h} = \\ \arg \max_{S_{j} \neq S_{i}} D(\boldsymbol{R}_{i},\boldsymbol{S}_{j}) \text{ are the most similar negatives in } x \text{ for } (\boldsymbol{R}_{i},\boldsymbol{S}_{i}), \\ \text{and } E(\boldsymbol{R}_{i},\boldsymbol{S}_{i}) = \|f(\boldsymbol{R}_{i}) - f(\boldsymbol{S}_{i})\|_{2} \text{ denotes the Euclidean distance} \\ \text{between feature representations obtained by model inference.}$$



Experiments

Main results comparisons

Table 1: Comparison with state-of-the-art methods on Market-Sketch-1K dataset. Both training and testing set uses all sketches. 'S' and 'M' represent single-query and multi-query, respectively. 'Backbone' refers to network structure used by each method, mainly including: ResNet50 [50] and CLIP [40]. **Bold** values represent the optimal results.

Methods	Query	Backbone	Reference	mAP	Rank@1	Rank@5	Rank@10
DDAG [51]	S	ResNet50	ECCV'2020	12.13	11.22	25.40	35.02
CM-NAS [52]	S	ResNet50	ICCV'2021	0.82	0.70	2.00	3.90
CAJ [53]	S	ResNet50	ICCV'2021	2.38	1.48	3.97	7.34
MMN [54]	S	ResNet50	MM'2021	10.41	9.32	21.98	29.58
DART 55	S	ResNet50	CVPR'2022	7.77	6.58	16.75	23.42
DCLNet [56]	S	ResNet50	MM'2022	13.45	12.24	29.20	39.5
DSCNet [57]	S	ResNet50	TIFS'2022	14.73	13.84	30.55	40.34
DEEN [58]	S	ResNet50	CVPR'2023	12.62	12.11	25.44	30.94
BDG 6	S	ResNet50	MM'2023	19.61	18.10	38.95	50.75
	Μ	Residentio		24.45	24.70	50.40	63.45
	S		CLUDDIADAA	34.97	31.52	57.17	70.46
UNIReID [7]	Μ	CLIP	CVPR'2023	55.18	56.63	82.33	91.97
OLTM (Ours)	S M	CLIP	_	38.35 62.55	36.75 69.48	63.88 90.36	74.05 95.18

Table 2: Comparison with state-of-the-art methods on PKU-Sketch dataset. 'Backbone' includes GoogleNet [62], VGG-16 [63], ResNet50, ViT [64], and CLIP. '-' denotes the unavailable results. '[†]' indicates that we reproduce UNIReID results following our training configuration.

Methods	Backbone	Reference	mAP	Rank@1	Rank@5	Rank@10
TripleSN [65]	-	CVPR'2016	-	9.0	26.8	42.2
GNSiamese [66]	GoogleNet	TOG'2016	-	28.9	54.0	62.4
AFLNet [4]	GoogleNet	MM'2018	-	34.0	56.3	72.5
LMDI [8]	VGG-16	Neuro'2020	-	49.0	70.4	80.2
SKetchTrans [10]	ViT	MM'2022	-	84.6	94.8	98.2
CCSC [9]	ViT	MM'2022	83.7	86.0	98.0	100.0
SKetchTrans+ [5]	ViT	PAMI'2023	-	85.8	96.0	99.0
UNIReID [†] [7]	CLIP	CVPR'2023	88.7	92.4	98.0	99.6
DALNet [11]	ResNet50	AAAI'2024	86.2	90.0	98.6	100.0
OLTM (Ours)	CLIP	-	91.4	94.0	99.4	100.0

Experiments

Visualization of retrieval results

(-) Mardad Chatal 117 (Circle Origin)	(1) Market Chatak 1V (Mark: Orana)	

(a) Market-Sketch-1K (Single-Query)

(b) Market-Sketch-1K (Multi-Query)

(c) PKU-Sketch

Figure 3: The Rank-5 retrieval results on two datasets. For the Market-Sketch-1K dataset, both single-query and multi-query scenarios are presented. **Green** border indicates correctly retrieved target pedestrians, while **yellow** border indicates incorrectly matched pedestrians.

simple cross-attention to integrate the global features. \mathcal{L}_{htl} [67] represents the hard triplet loss. I values represent the optimal results.											
	Prompt	setting		M	odule			Loss		M	etrics
Handcrafted	VQA	Template	Prompt	Baseline	TCA	CFI	$\mid \mathcal{L}_{\text{ID}}$	$\mathcal{L}_{ ext{htl}}$	$\mathcal{L}_{ ext{tal}}$	mAP	Rank
-	- - - -	- - - -	- - - -	✓	√	✓	✓	-	√	55.47 61.46 61.81 61.76	60.0 68.0 67.4 65.4

√

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

Experiments

 \checkmark

 \checkmark

-

-

Table 3: Ablation studies on Market-Sketch-1K dataset. Training and testing are under the multi-query setting. "Handcrafted" and "VQA" denote manually annotated and VQA generated text attributes, respectively. "Template" represents the sentence template defined by experts. "Prompt" denotes the learnable text prompts. The 'Baseline' uses an image encoder to process both modalities and employs let loss. **Bold** SI V

Ablation study

 Table 4: Performance of TAL

 \mathcal{L}_{tal} with various baselines. '+' represents WRT; '*' represents HTL \mathcal{L}_{htl} .

Methods	mAP	R@1
BDG^+	24.45	24.70
BDG + TAL	27.79	27.71
baseline*	57.74	60.84
baseline + TAL	58.41	61.04
OLTM*	61.63	66.06
OLTM + TAL	62.55	69.48

Rank@1

60.04 68.07

67.47 65.46

60.84

65.66

57.83

66.06

69.48

57.74

61.10

54.93

61.63

62.55

Thank You for Your Attention!

Optimal Transport-based Labor-free Text Prompt Modeling for Sketch Re-identification