

Semi-Open 3D Object Retrieval via Hierarchical Equilibrium on Hypergraph

Background

Motivation

Framework

Datasets

		SO-ESB	SO-NTU	SO-MN40	SO-ABO
	Coarse	3	3	3	3
Categories	Fine	41	67	40	21
	Seen	17	13	8	4
	Unseen	24	54	32	17
Number	Training	98	378	2821	1082
	Retrieval	457	1232	7591	4432
	Query	96	216	128	68
	Target	361	1016	7463	4364

Metrics

- Average Precision (mAP)
- Recall
- Normalized Discounted Cumulative Gain (NDCG)
- Average Normalized Modified Retrieval Rank (ANMRR)
- Precision-Recall Curve (PR-Curve)

Rertrieval Performance

Mada	Ĭ	SC)-MN40		SO-ABO				
Method	mAP↑	Recall ↑	NDCG ↑	ANMRR ↓	mAP↑	Recall ↑	NDCG ↑	ANMRR ↓	
SDML	0.5018	0.3241	0.6082	0.5106	0.4380	0.3425	0.4726	0.5564	
CMCL	0.5086	0.3281	0.6128	0.5060	0.4520	0.3657	0.4816	0.5458	
MMSAE	0.5189	0.3335	0.6226	0.4938	0.4783	0.3863	0.4929	0.5264	
TranGCN	0.5188	0.3358	0.6131	0.4957	0.5175	0.3956	0.5127	0.4801	
C2AE	0.4865	0.3152	0.5977	0.5231	0.4669	0.3674	0.4794	0.5313	
HGM ² R	0.5779	0.3698	0.6482	0.4407	0.6069	0.4675	0.5463	0.4154	
Ours	0.6336	0.3993	0.6874	0.3972	0.6339	0.4793	0.5622	0.3836	
					SO-NTU				
Mathad		S	D-ESB			SC)-NTU		
Method	mAP↑	S(Recall↑	D-ESB NDCG↑	ANMRR↓	mAP↑	SC Recall↑	D-NTU NDCG↑	ANMRR ↓	
Method SDML	mAP ↑ 0.4947	S (Recall ↑ 0.8027	D-ESB NDCG ↑ 0.1858	ANMRR ↓ 0.5430	mAP ↑ 0.4384	SC Recall↑ 0.7009	D-NTU NDCG ↑ 0.1937	ANMRR ↓ 0.5764	
Method SDML CMCL	mAP ↑ 0.4947 0.4990	S(Recall↑ 0.8027 0.8154	D-ESB NDCG ↑ 0.1858 0.1880	ANMRR ↓ 0.5430 0.5457	mAP ↑ 0.4384 0.4440	SC Recall↑ 0.7009 0.7053	D-NTU NDCG ↑ 0.1937 0.1946	ANMRR ↓ 0.5764 0.5721	
Method SDML CMCL MMSAE	mAP ↑ 0.4947 0.4990 0.5036	SC Recall↑ 0.8027 0.8154 0.8503	D-ESB NDCG ↑ 0.1858 0.1880 0.1931	ANMRR ↓ 0.5430 0.5457 0.5523	mAP ↑ 0.4384 0.4440 0.4454	SC Recall↑ 0.7009 0.7053 0.7046	D-NTU NDCG ↑ 0.1937 0.1946 0.1935	ANMRR ↓ 0.5764 0.5721 0.5745	
Method SDML CMCL MMSAE TranGCN	mAP ↑ 0.4947 0.4990 0.5036 0.5063	SC Recall↑ 0.8027 0.8154 0.8503 0.9011	D-ESB NDCG↑ 0.1858 0.1880 0.1931 0.1968	ANMRR ↓ 0.5430 0.5457 0.5523 0.5408	mAP ↑ 0.4384 0.4440 0.4454 0.4548	SC Recall↑ 0.7009 0.7053 0.7046 0.7121	D-NTU NDCG↑ 0.1937 0.1946 0.1935 0.1961	ANMRR ↓ 0.5764 0.5721 0.5745 0.5624	
Method SDML CMCL MMSAE TranGCN C2AE	mAP ↑ 0.4947 0.4990 0.5036 0.5063 0.4809	SC Recall↑ 0.8027 0.8154 0.8503 0.9011 0.7863	D-ESB NDCG↑ 0.1858 0.1880 0.1931 0.1968 0.1824	ANMRR↓ 0.5430 0.5457 0.5523 0.5408 0.5501	mAP↑ 0.4384 0.4440 0.4454 0.4548 0.4303	SC Recall↑ 0.7009 0.7053 0.7046 0.7121 0.6987	D-NTU NDCG↑ 0.1937 0.1946 0.1935 0.1961 0.1915	ANMRR↓ 0.5764 0.5721 0.5745 0.5624 0.5828	
Method SDML CMCL MMSAE TranGCN C2AE HGM ² R	mAP↑ 0.4947 0.4990 0.5036 0.5063 0.4809 0.5049	SC Recall↑ 0.8027 0.8154 0.8503 0.9011 0.7863 0.8831	D-ESB NDCG↑ 0.1858 0.1880 0.1931 0.1968 0.1824 0.1939	ANMRR↓ 0.5430 0.5457 0.5523 0.5408 0.5501 0.5551	mAP↑ 0.4384 0.4440 0.4454 0.4548 0.4303 0.4821	SC Recall↑ 0.7009 0.7053 0.7046 0.7121 0.6987 0.7364	D-NTU NDCG↑ 0.1937 0.1946 0.1935 0.1961 0.1915 0.2026	ANMRR↓ 0.5764 0.5721 0.5745 0.5624 0.5828 0.5438	

Ablation Studies

Method	SO-ESB				SO-NTU			
	mAP↑	Recall [↑]	NDCG ↑	ANMRR↓	mAP↑	Recall [↑]	NDCG ↑	ANMRR ↓
HRE w/o ReEnz	0.5159	0.9086	0.1953	0.5431	0.4913	0.7534	0.2053	0.5355
HRE w/o \mathcal{L}_{ce}	0.5133	0.8738	0.1934	0.5365	0.5161	0.7902	0.2162	0.5162
SET w/o \mathcal{E}_c	0.5358	0.8957	0.1975	0.5184	0.5285	0.7898	0.2184	0.4986
GCN-based SET	0.5405	0.8999	0.2003	0.5192	0.5144	0.7703	0.2140	0.5138
MLP-based SET	0.5014	0.8483	0.1930	0.5476	0.4689	0.7304	0.2023	0.5561
HRE+SET	0.5756	0.9346	0.2045	0.4874	0.5678	0.8116	0.2251	0.4677

Mathad	SO-MN40				SO-ABO			
Method	mAP↑	Recall [↑]	NDCG ↑	ANMRR↓	mAP↑	Recall [↑]	NDCG ↑	ANMRR↓
HRE w/o ReEnz	0.5791	0.3710	0.6479	0.4410	0.6055	0.4523	0.5535	0.4062
HRE w/o \mathcal{L}_{ce}	0.5967	0.3783	0.6756	0.4309	0.5885	0.4269	0.5413	0.4230
SET w/o \mathcal{E}_c	0.5913	0.3757	0.6669	0.4347	0.6006	0.4263	0.5494	0.4132
GCN-based SET	0.5602	0.3573	0.6410	0.4628	0.5686	0.4253	0.5314	0.4415
MLP-based SET	0.5088	0.3290	0.6149	0.5073	0.4880	0.3787	0.5023	0.5159
HRE+SET	0.6336	0.3993	0.6874	0.3972	0.6339	0.4793	0.5622	0.3836

(a) PR-C on SO-ESB. (b) PR-C on SO-NTU. (c) PR-C on SO-MN40. (d) PR-C on SO-ABO.

Conclusion

■ In this paper, we introduce a more practical *Semi-Open Environment* setting for open-set 3D object retrieval with hierarchical labels, in which the training and testing set share a partial label space for coarse categories but are completely disjoint from fine categories. We propose the Hypergraph-Based Hierarchical Equilibrium Representation (HERT) framework for semiopen 3D object retrieval. Specifically, to overcome the global disequilibrium of unseen categories, we propose the Hierarchical Retrace Embedding (HRE) module to fully leverage the multi-level category information. Besides, we perform the Structured Equilibrium Tuning (SET) module to tackle the feature overlap and class confusion problem. This module utilizes more equilibrial correlations among objects and generalizes to unseen categories, by constructing a superposed hypergraph based on the local coherent and global entangled correlations. Furthermore, we construct four 3D object datasets with multi-level category labels for semi-open 3DOR tasks, *i.e.*, SO-ESB, SO-NTU, SO-MN40, and SO-ABO. Results demonstrate that the proposed method can effectively generate and generalize the hierarchical embeddings of 3D objects towards the semi-open environment. However, due to dataset limitations, we are currently unable to verify the balanced representation effect on more than three levels of labels, which is one of our future research directions. We believe this paper can provide new insights for future research in more practical scenarios of open-set learning.